Презентация на тему "элементарные частицы". Есть ли «сверхсветовой мир»? Свойства кварков: масса

Урок № 67.

Тема урока : Проблемы элементарных частиц

Цели урока:

Образовательные: познакомить учащихся с понятием - элементарная частица, с классификацией элементарных частиц, обобщить и закрепить знания об фундаментальных видах взаимодействий, формировать научное мировоззрение.

Воспитательные: формировать познавательный интерес к физике, привитие любви и уважения к достижениям науки.

Развивающие: развитие любознательности, умение анализировать, самостоятельно формулировать выводы, развитие речи, мышления.

Оборудование: интерактивная доска (или проектор с экраном).

Тип урока: изучение нового материала.

Вид урока: лекция

Ход урока:

    Организационный этап

    Изучение новой темы.

В природе существуют 4 типа фундаментальных (основных) взаимодействий: гравитационное, электромагнитное, сильное и слабое. По современным представлениям взаимодействие между телами осуществляется через поля, окружающие эти тела. Само поле в квантовой теории понимается как совокупность квантов. Каждый тип взаимодействия имеет своих переносчиков взаимодействия и сводится к поглощению и испусканию частицами соответствующих квантов света.

Взаимодействия могут быть длиннодействующие (проявляются на очень больших расстояниях) и короткодействующие (проявляются а очень малых расстояниях).

    Гравитационное взаимодействие осуществляется посредством обмена гравитонами. Экспериментально они не обнаружены. Согласно закону, открытому в 1687 году великим английским ученым Исааком Ньютоном, все тела независимо от формы и размеров притягиваются друг другу с силой, прямо пропорциональной их массе и обратно пропорциональна квадрату расстояния между ними. Гравитационное взаимодействие всегда приводит к притяжению тел.

    Электромагнитное взаимодействие является длиннодействующим. В отличие от гравитационного взаимодействия, электромагнитное взаимодействие может привести как к притяжению, так и к отталкиванию. Переносчиками электромагнитного взаимодействия являются кванты электромагнитного поля – фотонами. В результате обмена этими частицами и возникает электромагнитное взаимодействие между заряженными телами.

    Сильное взаимодействие – это самые мощное из всех взаимодействий. Оно является короткодействующим, соответствующие силы очень быстро убывают по мере увеличения расстояния между ними. Радиус действия ядерных сил 10 -13 см

    Слабое взаимодействие проявляется на очень малых расстояниях. Радиус действия примерно в 1000 раз меньше, сем у ядерных сил.

Открытие радиоактивности и результаты опытов Резерфорда убедительно показали, что атомы состоят из частиц. Как было установлено, они состоят из электронов, протонов и нейтронов. Первое время частицы, из которых построены атомы, считались неделимыми. Поэтому их назвали элементарными частицами. Представление о «простом» устройстве мира разрушилось, когда в 1932 году открыли античастицу электрона – частицу, которая имела макую же массу, что и электрон, но отличается от него знаком электрического заряда. Эту положительно заряженную частицу назвали позитроном.. согласно современным представлениям у каждой частицы есть античастица. Частица и античастица имеют одинаковою массу, но противоположные знаки всех зарядов. Если античастица совпадает с самой частицей, то такие частицы называют истинно нейтральными, заряд их равен 0. Например, фотон. Частица и античастица при столкновении аннигилируют, то есть исчезают, превращаясь в другие частицы (часто этими частицами является фотон).

Все элементарные частицы (которые нельзя разделить на составные) делятся на 2 группы: фундаментальные (бесструкaтурные частицы, все фундаментальные частицы на данном этапе развития физики считаются бесструктурными, то есть не состоят из других частиц) и адроны (частицы, имеющие сложное строение).

Фундаментальные частицы в свою очередь делятся на лептоны, кварки и переносчики взаимодействий. Адроны делятся на барионы и мезоны. К лептонам относятся электрон, позитрон, мьюон, таон, три типа нейтрино.

К кварками называют частицы, из которых состоят все адроны. Участвуют в сильном взаимодействии.

Согласно современным представлениям, каждое из взаимодействий возникает в результате обмена частицами, называемые переносчиками этого взаимодействия: фотон (частица, переносящая электромагнитное взаимодействие), восемь глюонов (частиц, переносящих сильное взаимодействие), три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие, гравитон (переносчик гравитационного взаимодействия). Существование гравитонов пока не доказано экспериментально.

Адроны участвуют во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на: барионы, состоящие из трех кварков, и мезоны, состоящие из двух кварков, один из которых является антикварком.

Самое сильное взаимодействие – это взаимодействие между кварками. Протон состоит из 2 u кварков одного d кварка, нейтрон из одного u кварка и 2 d кварков. Оказалось, что на очень малых расстояниях ни один из кварков не замечает соседей, и они ведут себя как свободные, невзаимодействующие между собой частицы. При удалении кварков друг от друга между ними возникает притяжение, которое с увеличением расстояния возрастает. Чтобы разделить адроны на отдельные изолированные кварки потребовалась бы большая энергия. Так как такой энергии нет, то кварки оказываются вечными пленниками и навсегда остаются запертыми внутри адрона. Кварки удерживаются внутри адрона глюонным полем.

III . Закрепление

Вариант 1.

Вариант 2.

3.. Сколько живет нейтрон вне атома ядра? А. 12 мин Б. 15 мин

    Итог урока. На уроке познакомились частицами микромира, выяснили, какие частицы называются элементарными.

    Д/з § 9.3

Название частицы

Масса (в электронных массах)

Электрический заряд

Время жизни (с)

Античастица

Стабилен

Нейтрино электронное

Стабильно

Нейтрино мюонное

Стабильно

Электрон

Стабильн

Пи-мезоны

≈ 10 –10 –10 –8

Эта-нуль-мезон

Стабилен

Лямбда-гиперон

Сигма-гипероны

Кси-гипероны

Омега-минус-гиперон

III . Закрепление

    Назовите основные взаимодействия, которые существую в природе

    Чем отличаются частица и античастица? Что у них общего?

    Какие частицы участвую в гравитационном, электромагнитном, сильном и слабом взаимодействиях?

Вариант 1.

1. Одно из свойств элементарных частиц – способность……… А. превращаться друг в друга Б. самопроизвольно видоизменятся

2.Частицы, которые могут существовать в свободном состоянии неограниченное время, называются….. А. нестабильными Б. стабильными.

3. Какая частица является стабильной? А. протон Б. мезон

4. Частица, являющаяся долгожителем. А. нейтрино Б. нейтрон

5.Нейтрино получается в результате распада….. А. электрона Б. нейтрона

Вариант 2.

    Что является главным фактором существования элементарных частиц?

А. взаимное их проникновение Б. взаимное их превращение.

2. Какая из элементарных частиц не выделена в свободную частицу. А. пион Б. кварки

3. Сколько живет нейтрон вне атома ядра? А. 12 мин Б. 15 мин

    Какая из частиц не является стабильной. А. фотон Б. лептон

    Существуют ли в природе неизменные частицы? А. да Б. нет

Презентация на тему "Элементарные частицы" по физике в формате powerpoint. В данной презентации для школьников 11 класса объясняется физика элементарных частиц и систематизируются знания по теме. Цель работы - развить абстрактное, экологическое и научное мышления учащихся на основе представлений об элементарных частицах и их взаимодействиях. Автор презентации: Попова И.А., учитель физики.

Фрагменты из презентации

Сколько элементов в таблице Менделеева?

  • Всего лишь 92.
  • Как? Там больше?
  • Верно, но все остальные - искусственно полученные, они в природе не встречаются.
  • Итак - 92 атома. Из них тоже можно составить молекулы, т.е. вещества!
  • Но то, что все вещества состоят из атомов, утверждал еще Демокрит (400 лет до нашей эры).
  • Он был большим путешественником, и его любимым изречением было:
  • "Не существует ничего, кроме атомов и чистого пространства, все остальное - воззрение"

Хронология физики частиц

  • Перед физиками - теоретиками встала труднейшая задача упорядочить весь обнаруженный "зоопарк" частиц и попытаться свести число фундаментальных частиц к минимуму, доказав, что другие частицы состоят из фундаментальных частиц
  • Все эти частицы были нестабильными, т.е. распадались на частицы с меньшими массами, в конечном счете превращаясь в стабильные протон, электрон, фотон и нейтрино (и их античастицы).
  • Третий эта. М. Гелл-Манн и независимо Дж. Цвейг Предложили модель строения сильно взаимодействующих частиц из фундаментальных частиц - кварков
  • Эта модель к настоящему времени превратилась в стройную теорию всех известных типов взаимодействий частиц.

Как обнаружить элементарную частицу?

Обычно изучают и анализируют следы (траектории или треки), оставленные частицами, по фотографиям

Классификация элементарных частиц

Все частицы делятся на два класса:

  • Фермионы, которые составляют вещество;
  • Бозоны, через которые осуществляется взаимодействие.

Кварки

  • Кварки участвуют в сильных взаимодействиях, а также в слабых и в электромагнитных.
  • Гелл-Манн и Георг Цвейг предложили кварковую модель в 1964 г.
  • Принцип Паули: в одной системе взаимосвязанных частиц никогда не существует хотя бы две частицы с тождественными параметрами, если эти частицы обладают полуцелым спином.

Что такое спин?

  • Спин демонстрирует, что существует пространство состояний, никак не связанное с перемещением частицы в обычном пространстве;
  • Спин (от англ. to spin - крутиться) часто сравнивают с угловым моментом «быстро вращающегося волчка» - это неверно!
  • Спин является внутренней квантовой характеристикой частицы, которая не имеет аналога в классической механике;
  • Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого

Четыре вида физических взаимодействий

  • гравитационные,
  • электромагнитные,
  • слабые,
  • сильные.
  • Слабое взаимодействие - меняет внутреннюю природу частиц.
  • Сильные взаимодействия - обусловливают различные ядерные реакции, а также возникновение сил, связывающих нейтроны и протоны в ядрах.

Свойства кварков

  • Кварки имеют свойство, называемое цветовой заряд.
  • Существуют три вида цветового заряда, условно обозначаемые как
  • синий,
  • зелёный
  • Красный.
  • Каждый цвет имеет дополнение в виде своего антицвета —антисиний, антизелёный и антикрасный.
  • В отличие от кварков, антикварки обладают не цветом, а антицветом, то есть противоположным цветовым зарядом.
Свойства кварков: масса
  • У кварков имеется два основных типа масс, несовпадающих по величине:
  • масса токового кварка, оцениваемая в процессах со значительной передачей квадрата 4-импульса, и
  • структурная масса (блоковая, конституэнтная масса); включает в себя ещё массу глюонного поля вокруг кварка и оценивается из массы адронов и их кваркового состава.
Свойства кварков: аромат
  • Каждый аромат (вид) кварка характеризуется такими квантовыми числами, как
  • изоспин Iz,
  • странность S,
  • очарование C,
  • прелесть (боттомность, красота) B′,
  • истинность (топность) T.

Задачи

  • Какая энергия выделяется при аннигиляции электрона и позитрона?
  • Какая энергия выделяется при аннигиляции протона и антипротона?
  • При каких ядерных процессах возникает нейтрино?
    • А. При α - распаде.
    • Б. При β - распаде.
    • В. При излучении γ - квантов.
  • При каких ядерных процессах возникает антинейтрино?
    • А. При α - распаде.
    • Б. При β - распаде.
    • В. При излучении γ - квантов.
    • Г. При любых ядерных превращениях
  • Протон состоит из...
    • А. . . .нейтрона, позитрона и нейтрино.
    • Б. . . .мезонов.
    • В. . . .кварков.
    • Г. Протон не имеет составных частей.
  • Нейтрон состоит из...
    • А. . . .протона, электрона и нейтрино.
    • Б. . . .мезонов.
    • В. . . . кварков.
    • Г. Нейтрон не имеет составных частей.
  • Что было доказано опытами Дэвиссона и Джермера?
    • А. Квантовый характер поглощения энергии атомами.
    • Б. Квантовый характер излучения энергии атомами.
    • В. Волновые свойства света.
    • Г. Волновые свойства электронов.
  • Какая из приведенных формул определяет длину волны де-Бройля для электрона (m и v — масса и скорость электрона)?

Тест

  • Какие физические системы образуются из элементарных частиц в результате электромагнитного взаимодействия? А. Электроны, протоны. Б. Ядра атомов. В. Атомы, молекулы вещества и античастицы.
  • С точки зрения взаимодействия все частицы делятся на три типа: А. Мезоны, фотоны и лептоны. Б. Фотоны, лептоны и барионы. В. Фотоны, лептоны и адроны.
  • Что является главным фактором существования элементарных частиц? А. Взаимное превращение. Б. Стабильность. В. Взаимодействие частиц друг с другом.
  • Какие взаимодействия определяют устойчивость ядер в атомах? А. Гравитационные. Б. Электромагнитные. В. Ядерные. Г. Слабые.
  • Существуют ли в природе неизменные частицы? А. Существуют. Б. Не существуют.
  • Реальность превращения вещества в электромагнитное поле: А. Подтверждается на опыте аннигиляции электрона и позитрона. Б. Подтверждается на опыте аннигиляции электрона и протона.
  • Реакция превращения вещества в поле: А. е + 2γ→е+ Б. е + 2γ→е- В. е+ +е- =2γ.
  • Какое взаимодействие ответственно за превращение элементарных частиц друг в друга? А. Сильное взаимодействие. Б. Гравитационное. В. Слабое взаимодействие Г. Сильное, слабое, электромагнитное.

Ответы: В; В; А; В; Б; А; В; Г. 5. Существуют ли в природе неизменные частицы? А. Существуют. Б. Не существуют. 6. Реальность превращения вещества в электромагнитное поле: А. Подтверждается на опыте аннигиляции электрона и позитрона. Б. Подтверждается на опыте аннигиляции электрона и протона. 7. Реакция превращения вещества в поле: А. е + 2??е+ Б. е + 2??е- В. е+ +е- =2?. 8. Какое взаимодействие ответственно за превращение элементарных частиц друг в друга? А. Сильное взаимодействие. Б. Гравитационное. В. Слабое взаимодействие Г. Сильное, слабое, электромагнитное.

Слайд 34 из презентации «Классы элементарных частиц» . Размер архива с презентацией 1337 КБ.

Физика 11 класс

краткое содержание других презентаций

««Строение атома» физика 11 класс» - Импульс фотона. Монохроматический свет. Определите энергию и импульс фотона видимого света. Каков заряд фотона. Первый постулат Бора. Сколько квантов с различной энергией. Диаграмма энергетических уровней атома. Как корпускулярные, так и волновые свойства. P = h. Фотон либо движется со скоростью света, либо не существует. Во сколько раз линейный размер ядра меньше размера атома. Можно ли остановить фотон.

«Ультразвук в медицине» - Ультразвук в помощь фармакологам. Ультразвуковое исследование. Вредно ли ультразвуковое лечение. Лечение ультразвуком. Рождение ультразвука. Ультразвуковые процедуры. Вредно ли ультразвуковое исследование. Детская энциклопедия. Ультразвук в медицине. План.

«Скорость волны» - В воздухе свет. Разобьем мысленно поверхность моря на полосы. Гляди в оба. Миражи в пустыне. Звуковые волны. Показатель преломления. Волны движутся все медленнее. Как, однако, полезно знать физику, даже полководцам. Найдем скорость распространения волн на пляже. Уравнение луча у(x). Волны на пляже, солнце в небе и многое другое.

«Электрический резонанс» - Демонстрация настройки самодельного радиоприемника на волну. Контур. Электрическая схема. Кусочек говядины помещают между обкладками плоского конденсатора. В цепь переменного тока с частотой 400 Гц включена катушка. Три конденсатора переменной ёмкости. Резонанс в электрической цепи. В электрической цепи резонанс наступает при равенстве. Условие резонанса. Составьте электрическую схему.

«Классы элементарных частиц» - Протон не имеет составных частей. "Зоопарк" частиц. Энергия. Неизменные частицы. Как обнаружить элементарную частицу. Аромат. Какая энергия выделяется при аннигиляции протона и антипротона. Элементарные частицы. Нейтрон. Фотоны. Периодическая система элементарных частиц. Четыре вида физических взаимодействий. Поколение. Квантовый характер поглощения энергии. Спин. Хронология физики частиц. Цвет. Нейтрино.

«Законы волновой оптики» - Дифракция света. Объяснение. Законы электромагнитного поля. Развитие представлений о природе света. Принцип Гюйгенса–Френеля. Шкала электромагнитных волн. Построения Гюйгенса. Интерференционный опыт Юнга. Интерференция. Наблюдение интерференции света. Юнг. Кольца Ньютона. Волновая оптика. Зоны Френеля. Волновая теория. Электромагнитная теория. Свет играет чрезвычайно важную роль в нашей жизни. Два противоположных подхода к объяснению природы света.

Ответ на непрекращающийся вопрос: какая самая маленькая частица во Вселенной эволюционировал вместе с человечеством.

Люди когда-то думали, что песчинки были строительными блоками того, что мы видим вокруг нас. Затем был обнаружен атом, и он считался неделимым, пока он не был расщеплен, чтобы выявить протоны, нейтроны и электроны внутри. Они тоже не оказались самыми маленькими частицами во Вселенной, так как ученые обнаружили, что протоны и нейтроны состоят из трех кварков каждый.

Пока ученые не смогли увидеть никаких доказательств того, что внутри кварков что-то есть и достигнут самый фундаментальный слой материи или самая маленькая частица во Вселенной.

И даже если кварки и электроны неделимы ученые не знают, являются ли они наименьшими битами материи в существовании или если Вселенная содержит объекты, которые являются еще более мелкими.

Самые мельчайшие частицы Вселенной

Они бывают разных вкусов и размеров, некоторые имеют удивительную связь, другие по существу испаряют друг друга, многие из них имеют фантастические названия: кварки состоящие из барионов и мезонов, нейтроны и протоны, нуклоны, гипероны, мезоны, барионы, нуклоны, фотоны и т.д.

Бозон Хиггса, настолько важная для науки частица, что ее называют “частицей Бога”. Считается, что она определяет массу всем другим. Элемент был впервые теоретизирован в 1964 году, когда ученые задавались вопросом, почему некоторые частицы более массивны, чем другие.

Бозон Хиггса связан с так называемым полем Хиггса который, как полагают, заполняют Вселенную. Два элемента (квант поля Хиггса и бозон Хиггса), ответственны за то, чтобы дать другим массу. Названа в честь шотландского ученого Питера Хиггса. С помощью 14 марта 2013 г. официально объявлено о подтверждении существования Бозона Хиггса.

Многие ученые утверждают, что механизм Хиггса разрешил недостающую часть головоломки, чтобы завершить существующую “стандартную модель” физики, которая описывает известные частицы.

Бозон Хиггса принципиально определил массу всему, что существует во Вселенной.

Кварки

Кварки (в переводе бредовые) строительные блоки протонов и нейтронов. Они никогда не одиноки, существуя только в группах. По-видимому, сила, которая связывает кварки вместе, увеличивается с расстоянием, поэтому чем дальше, тем труднее их будет разнять. Поэтому свободные кварки никогда не существуют в природе.

Кварки фундаментальные частицы являются бесструктурными, точечными размером примерно 10 −16 см .

Например, протоны и нейтроны состоят из трех кварков, причем протоны содержат два одинаковых кварка, в то время как нейтроны имеют два разных.

Суперсимметричность

Известно, что фундаментальные «кирпичики» материи фермионы это кварки и лептоны, а хранители силы бозоны это фотоны, глюоны. Теория суперсимметрии говорит о том, что фермионы и бозоны могут превращаться друг в друга.

Предсказываемая теория утверждает, что для каждой известной нам частицы есть родственная, которую мы еще не обнаружили. Например, для электрона это селекрон, кварка – скварк, фотона –фотино, хиггса - хиггсино.

Почему мы не наблюдаем этой суперсимметрии во Вселенной сейчас? Ученые считают, что они намного тяжелее, чем их обычные родственные частицы и чем тяжелее, тем короче их срок службы. По сути, они начинают разрушаться, как только возникают. Создание суперсимметрии требует весьма большого количества энергии, которая только существовала вскоре после большого взрыва и возможно может быть создана в больших ускорителях как большой адронный коллайдер.

Что касается того, почему симметрия возникла, физики предполагают, что симметрия, возможно, была нарушена в каком-то скрытом секторе Вселенной, который мы не можем видеть или касаться, но можем чувствовать только гравитационно.

Нейтрино

Нейтрино легкие субатомные частицы, которые свистят везде с близкой скоростью света. На самом деле, триллионы нейтрино текут через ваше тело в любой момент, хотя они редко взаимодействуют с нормальной материей.

Некоторые происходят от солнца, в то время как другие от космических лучей, взаимодействующих с атмосферой Земли и астрономическими источниками, такими как взрывающиеся звезды на Млечном пути и другие далекие галактики.

Антивещество

Считается, что все нормальные частицы имеют антивещества с одинаковой массой, но противоположным зарядом. Когда материя и встречаются, они уничтожают друг друга. Например, частица антиматерии протона является антипротоном, в то время как партнер антиматерии электрона называется позитроном. Антивещество относится к самым дорогим веществам в мире которые смогли определить люди.

Гравитоны

В области квантовой механики все фундаментальные силы передаются частицами. Например, свет состоит из безмассовых частиц, называемых фотонами, которые несут электромагнитную силу. Точно также гравитон является теоретической частицей, которая несет в себе силу гравитации. Ученым еще предстоит обнаружить гравитоны, которые сложно найти, потому что они так слабо взаимодействуют с веществом.

Нити энергии

В экспериментах крошечные частицы, такие как кварки и электроны, действуют как одиночные точки материи без пространственного распределения. Но точечные объекты усложняют законы физики. Поскольку нельзя приблизиться бесконечно близко к точке, так как действующие силы, могут стать бесконечно большими.

Идея под названием теория суперструн может решить эту проблему. Теория утверждает, что все частицы, вместо того, чтобы быть точечными, на самом деле являются маленькими нитями энергии. Тоесть все объекты нашего мира состоят из вибрирующих нитей и мембран энергии. Ничто не может быть бесконечно близко к нити, потому что одна часть всегда будет немного ближе, чем другая. Эта “лазейка”, похоже, решает некоторые из проблем бесконечности, делая идею привлекательной для физиков. Тем не менее, у ученых до сих пор нет экспериментальных доказательств того, что теория струн верна.

Другой способ решения точечной проблемы – сказать, что само пространство не является непрерывным и гладким, а на самом деле состоит из дискретных пикселей или зерен, иногда называемых пространственно-временной структурой. В этом случае две частицы не смогут бесконечно приближаться друг к другу, потому что они всегда должны быть разделены минимальным размером зерна пространства.

Точка черной дыры

Еще одним претендентом на звание самая маленькая частица во Вселенной является сингулярность (единственная точка) в центре черной дыры. Черные дыры образуются, когда вещество конденсируется в достаточно маленьком пространстве, которое захватывает гравитация, заставляя вещество втянуть вовнутрь, в конечном итоге конденсируясь в единую точку бесконечной плотности. По крайней мере по действующим законам физики.

Но большинство экспертов не считают черные дыры действительно бесконечно плотными. Они считают, что эта бесконечность является результатом внутреннего конфликта между двумя действующими теориями – общей теорией относительностью и квантовой механикой. Они предполагают, что когда теория квантовой гравитации может быть сформулирована, истинная природа черных дыр будет раскрыта.

Планковская длина

Нити энергии и даже самая маленькая частица во Вселенной может оказаться размером с “длину планка”.

Длина планка составляет 1,6 х 10 -35 метров (число 16 перед которым 34 нуля и десятичная точка) - непонятно малый масштаб, который связан с различными аспектами физики.

Планковская длина – «естественная единица» измерения длины, которая была предложена немецким физиком Максом Планком.

Длина Планка слишком мала для любого инструмента, чтобы измерить, но помимо этого, считается, что она представляет собой теоретический предел кратчайшей измеримой длины. Согласно принципу неопределенности, ни один инструмент никогда не должен быть в состоянии измерить что-либо меньшее, потому что в этом диапазоне Вселенная вероятностная и неопределенная.

Эта шкала также считается разграничительной линией между общей теорией относительности и квантовой механикой.

Планковская длина соответствует расстоянию, где гравитационное поле настолько сильно, что оно может начать делать черные дыры из энергии поля.

Очевидно сейчас, самая маленькая частица во Вселенной примерно размером с длину планка: 1,6·10 −35 метров

Выводы

Со школьной скамьи было известно, что самая маленькая частица во Вселенной электрон имеет отрицательный заряд и очень маленькую массу, равную 9,109 х 10 – 31 кг, а классический радиус электрона составляет 2,82 х 10 -15 м.

Однако физики уже оперируют с самыми маленькими частицами во Вселенной планковского размера который равняется примерно 1,6 х 10 −35 метров.

Можно ли путешествовать во времени? Не мысленно, как это делают писатели-фантасты, а по-настоящему — с помощью определенных технических средств? Или, по крайней мере, построить «хроноскоп», который позволял бы рассматривать детали прошлого подобно тому, как микроскоп позволяет разглядывать мелкие детали в пространстве? Теория относительности научила нас, как ускорять или замедлять время. Теперь, казалось бы, остался один шаг — научиться его поворачивать. Что мешает этому? Только лишь наше неуменье, недостаток знаний или же какие-то фундаментальные законы? Физика XX века уже приучила нас к мысли, что многое из считавшегося ранее принципиально недопустимым может происходить в каких-то особых, специфических условиях. Действительно, формулы теоретической физики подсказывают, что если бы удалось создать генератор лучей, обгоняющих свет, мы смогли бы высвечивать цепочки событий в обратном направлении — от настоящего в прошлое, а опыты на ускорителях элементарных частиц обнаружили явления, где противопоставление прошлого и будущего приводит к неоднозначности. Может, все же удастся создать «машину времени» и «хроноскоп» хотя бы в микромире? Поиском ответов на эти вопросы заняты многие физические лаборатории. В статье рассказывается о проблемах и трудностях, лежащих на этом пути, говорится о теоретических и экспериментальных исследованиях движений со сверхсветовой скоростью.

Скорость и время
В старой, ньютоновской физике время абсолютно — показания часов не зависят ни от скорости их движения, ни от каких-либо других причин. Часы на башне собора и в движущемся дилижансе всегда показывают одно и тo же время. Иначе ведет себя время в современной физике быстро движущихся тел. Стрелки перемещающихся часов идут медленнее неподвижных, их отставание будет тем заметнее, чем больше скорость движения.
Правда, даже для космических кораблей, пересекающих сегодня просторы космоса, отставание времени еще очень мало и станет ощутимым, когда их скорости возрастут по крайней мере в. несколько сот раз. Но вот в мире элементарных частиц эффект замедления времени весьма заметен. Например, время жизни покоящегося мю-мезона — около миллионной доли секунды, ничтожный миг; далее мю-мезон распадается на более легкие частицы. Однако быстрый мю-мезон, рожденный космической частицей в высотных слоях атмосферы, становится долгожителем. Он живет так долго, что успевает пройти сквозь всю толщу воздуха и распадается лишь глубоко под землей. Пользуясь эффектом замедления времени, физики транспортируют пучки ускоренных коротко-живущих частиц на большие расстояния. Подобное оборудование имеется во многих физических лабораториях.
Если движется не только наблюдаемое тело, но и сам наблюдатель, то его скорость тоже влияет на длительность происходящих с телом событий. Например, длительность события будет различной в зависимости от того, наблюдают его с космодрома или с борта стремительно летящей ракеты. Однако порядок событий, то есть какое из них произошло раньше, а какое позднее, во всех случаях остается неизменным. Выбором системы координат — движущейся или неподвижной — можно сократить или, наоборот, растянуть продолжительность события, но направление времени изменить нельзя.
Для объяснения наблюдаемой в опытах зависимости времени (и размеров тел) от скорости движения в начале нашего века была создана новая наука — теория относительности, само название которой говорит об относительности определения физических величин. Эта теория прекрасно согласуется с экспериментом и является фундаментом современной физики.
Хотя теория относительности создана на основе «досветовых явлений», протекающих со скоростями меньшими или равными скорости света, в её формулах нет никаких условий или ограничений, запрещающих их применение в «засветовой области» — при сверхсветовых скоростях. И вот тут обнаружилась замечательная особенность этих формул. Они приводят к заключению, что в процессах с участием «сверхсветовых тел» от скорости зависит не только длительность, но и сам временной порядок событий! Пилот одной ракеты скажет, что событие А произошло раньше события Б, а пилот второй ракеты, движущейся с иной скоростью, увидит их в обратном порядке. Время для этих наблюдателей будет идти в противоположных направлениях. То, что для одного — прошлое, для другого — будущее. Это похоже на то, как если бы в кино прокрутили пленку в обратном направлении. И нельзя сказать, какое направление времени истинное, как нельзя установить, какая сторона является правой, а какая — левой. Для меня это — правая, а для стоящего лицом ко мне человека — левая. И мы оба правы — относительность!
Временная динамика сверхсветовых явлений разительно отличается от того, к чему мы привыкли в «досветовом мире». В процессах, протекающих быстрее света, подходящим выбором системы координат можно обратить время вспять. Получается, что сверхсветовые частицы — это объекты, свободно путешествующие во времени. Давняя мечта фантастов!
Но вот существуют ли в природе такие частицы? Как и где следует их искать? И вообще, не приводит ли предположение о сверхсветовых скоростях к противоречию с другими положениями современной физической теории, ведь не все же гипотезы физиков реализуются в природе... С другой стороны, если сверхсветовых скоростей нет, то это, в свою очередь, потребует объяснения: может быть, за этим кроется какой-то новый физический закон?

Факты и предположения
Недавно мне попал в руки научно-фантастический роман С. Снегова «Люди как боги». Там звездолеты летают с любыми скоростями в пять, десять, сто раз быстрее света! Среди созвездий они ведут себя, как грузовик на узкой улице: развернулся в созвездии Персея, задним ходом углубился в соседнее шаровое скопление, оттуда устремился в созвездие Плеяд... Феерическая картина! А собственно, почему это невозможно?
Правда, в любом учебнике физики можно найти утверждение, что в природе существует некоторая максимальная скорость. Это скорость света в вакууме. Считается, что ни одно тело не может двигаться быстрее. Однако это всего лишь постулат, теоретическая гипотеза. То, что в эксперименте еще никогда не встречались сверхсветовые скорости, нельзя рассматривать как их стопроцентный запрет. Не встречались при одних условиях, могут встретиться при других. Пока не найдены законы, которые это исключают, вопрос остается открытым.
Большинство физиков сегодня склоняется к мнению, что сверхсветовых скоростей в природе нет, тем не менее вопрос продолжает беспокоить. В журналах нет-нет да и снова вспыхивает дискуссия о сверхсветовых явлениях. Мой аспирант составил список статей по этой проблеме, их оказалось более полутора тысяч! И основная часть появилась в журналах в последние десять—пятнадцать лет.
Действительно, что ограничивает скорость движения? Ведь скорость света, мгновенная по сравнению со скоростями, с которыми нам приходится иметь дело в нашей повседневной жизни, оказывается весьма скромной при переходе к космическим масштабам. Даже с аппаратами, исследующими ближайшие к нам планеты Солнечной системы, обмен сигналами происходит уже с весьма заметным запаздыванием. Неужели нельзя передвигаться и передавать информацию быстрее?
Чтобы разобраться в этих сложных вопросах, познакомимся сначала со свойствами, которыми должны обладать сверхсветовые частицы и состоящие из них тела. Это поможет выявить трудности, к которым приводит гипотеза сверхсветовых движений.

Зазеркалье скоростей
Частицы, движущиеся со скоростями, большими скорости света, принято называть тахионами — от греческого слова «тахис», что означает «быстрый», «стремительный». Досконально изучить их свойства можно будет после того, как такие частицы откроют на опыте. Однако некоторые их особенности можно предсказать теоретически на основе уже известных физических законов. Один из них — взаимосвязь массы и скорости частицы.
При обычных условиях эта взаимосвязь чрезвычайно слабая, и мы ее просто не замечаем. Однако если скорость тела становится сравнимой по своей величине со скоростью света, масса тела начинает возрастать, и дальнейшее увеличение скорости требует затрат все большей и большей энергии. Это явление называют световым барьером. Приближаться к нему так же трудно, как трудно подниматься на крутую гору путнику, имеющему за плечами рюкзак, тяжелеющий с каждым метром подъема. Чтобы достичь скорости света, разгоняя какие-либо частицы, например легкие электроны, пришлось бы затратить бесконечное количество энергии.
Казалось бы, это исключает всякие надежды на открытие сверхсветового вещества. Долгое время так и считали. Однако если посмотреть внимательнее, то можно заметить, что на самом деле отсюда вытекает лишь невозможность превращения обычных, досветовых частиц в тахионы путем непрерывного увеличения скорости. Но возможен взгляд и с другой стороны. Подобно тому как нейтрино и фотоны уже при самом их рождении обладают световой скоростью, тахионы должны иметь сверхсветовую скорость с самого момента их появления. Это означает, что тахионы — частицы совершенно нового типа. Они никогда не переходят через световой барьер на нашу, досветовую сторону. Они рождаются, живут и исчезают, всегда обладая скоростью, большей скорости света. Впервые на это обстоятельство лет двадцать назад обратил внимание советский физик Я. П. Терлецкий. Это поставило проблему. тахионов на твердую почву. После этого, собственно, и началось серьезное изучение их свойств.
Заметьте, обычные частицы приближаются к световому барьеру, когда их скорость возрастает, а тахионы, наоборот,— при уменьшении скорости. Если на классной доске провести мелом вертикальную линию и считать, что это — световой барьер, то слева будет область досветовых частиц, справа — область тахионов. На самом барьере масса и энергия очень велики, при удалении от него вправо или влево они уменьшаются. Световой барьер напоминает энергетическую горку со спусками в сторону меньших и больших скоростей. Теряя энергию, обычная частица замедляется, а тахион, напротив, ускоряется! Шарик из тахионного вещества, скатываясь с горки, теряет скорость — тормозится, падающее сверху тахионное яблоко будет замедляться. Зато сверхсветовая пуля под действием сопротивления воздуха должна, как это ни удивительно... разгоняться! По сравнению с обычными частицами кинематические свойства сверхсветовых частиц оказываются буквально вывернутыми наизнанку!
Мир тахионов — своеобразный антимир скоростей, своего рода Зазеркалье. Зазеркалье скоростей.
Однако этим дело не кончается. У сверхсветовых частиц есть еще несколько удивительных особенностей.

Скорость из ничего, частицы-призраки и другие чудеса сверхсветового мира
Знаменитый,враль барон Мюнхаузен однажды сам себя вытащил из болота, за волосы. Так сказать, приобрел скорость из ничего, без всякой внешней силы — с точки зрения физики, явление абсолютно невозможное. Но тахионы, по-видимому, умеют это делать. Они способны самоускоряться. Например, если электрон движется в среде со скоростью, большей так называемой фазовой скорости света (она равна скорости света в вакууме, деленной на показатель преломления среды), то в этой среде возникает специфическое электромагнитное излучение, называемое во всем мире черенковским — по имени открывшего его советского физика П. А. Черенкова. Тахионы, по-видимому, должны вызывать черенковское излучение даже в вакууме, поскольку их скорость всегда больше скорости света. Это излучение уменьшает энергию тахиона и, следовательно, увеличивает его скорость. Иначе говоря, тахион самоускоряется — сам по себе, без всякой внешней силы, разгоняется в пустом пространстве.
Ускоряться за счет потери энергии! Опять все не так, «как у людей»!
Правда, не все физики согласны с этим выводом. Некоторые из них приводят соображения в пользу того, что тахионы все же не должны излучать в вакууме. Пока не ясно, кто прав. Рассудить, наверное, сможет лишь эксперимент. Предпринимавшиеся до сих пор поиски черенковского излучения тахионов не увенчались успехом. Никаких излучений в вакууме не обнаружено. Впрочем, не ясно, были ли вообще там тахионы. Опыт ставился так, что если бы удалось заметить излучение, тогда можно было бы с уверенностью говорить о сверхсветовых частицах, излучение служило бы сигналом их присутствия. Если же излучения нет, то вывод неоднозначен: либо тахионы не излучают, либо их вообще не было в данном опыте. Так что окончательный ответ еще впереди.
Как уже говорилось выше, время жизни нестабильной частицы возрастает при увеличении ее скорости. А вот пространственные размеры, ее длина в направлении движения при этом уменьшается — частица сжимается, становится похожей на лепешку. Конечно, как и замедление времени, этот эффект становится заметным только при очень больших скоростях. Так, летящий скоростной самолет, по сравнению с его длиной на аэродроме, сжимается на величину приблизительно в сотню тысяч раз меньшую толщины человеческого волоса. Ракета, выводящая на орбиту спутник, сокращается в своей длине примерно на один микрон. Другое дело, если бы она двигалась со скоростью, равной половине скорости света или чуть больше. Тогда изменение ее размеров составляло бы уже около десятка метров.
Нельзя не признать, что с позиций обыденного опыта увеличение времени жизни и сокращение длин движущихся предметов выглядят весьма непривычно. Но еще удивительнее ведут себя сверхсветовые тела. Формулы теории относительности предсказывают, что продольные размеры разгоняющегося тахиона растут,— по отношению к неподвижному наблюдателю сверхсветовая частица как бы распухает вдоль оси своего движения, а течение времени по неподвижным часам резко убыстряется. В пределе, при бесконечно большой скорости, тахион вытягивается по всей бесконечно длинной траектории. Его масса| и энергия при этом становятся равными нулю. Опять все наоборот по сравнению с обычными частицами!
Отдав всю энергию, тахион становится безынерционной струей материи, распределенной сразу вдоль всей своей траектории. Можно сказать и по-другому: тахион с бесконечной скоростью находится сразу во всех точках своей траектории и проскакивает ее мгновенно. А это означает, что тахион существует только в один-единственный момент, а в остальное время его нельзя обнаружить ни в одной точке пространства. И может случиться так, что, начав двигаться, находящийся в абсолютно пустом пространстве наблюдатель вдруг обнаружит, что пространство вокруг него заполнено тахионами. Число частиц оказывается зависящим от скорости наблюдателя. Изменяя скорость ракеты, космонавт каждый раз будет видеть вокруг себя различную плотность материи. Тахионы, как призраки в старом английском замке, то исчезают, то вдруг вновь появляются будто из ничего. Согласитесь, эффект более удивительный, чем «простая» зависимость длины предметов от скорости!
Самоускорение, распухание, размазывание по всей траектории — это действительно очень непривычные и странные свойства. Однако «странно»— не значит «нельзя». К необычным явлениям и свойствам можно привыкнуть. Важно, что сами по себе они не противоречат фундаментальным законам природы.
Значительно более серьезные трудности связаны с беспричинными сверхсветовыми процессами. Оказывается, и такие возможны для тахионов!

Проблема причинности
Первоначально физикам казалось, что вопиющим противоречием является уже сам факт изменения временного порядка в процессах с тахионами. Ведь если, например, один наблюдатель зафиксировал, что тахион испущен атомом урана и поглощен атомом серы, то другой наблюдатель может увидеть, что атом серы поглощает тахион, который еще только будет испущен ураном. Явная бессмыслица!
Выход нашел работающий ныне в США пакистанский физик Сударшан. Он учел, что любому процессу с элементарными частицами всегда соответствует обратный, в котором частицы заменены на античастицы. Такая симметрия хорошо проверена на опыте. С формальной точки зрения прямой и обратный процессы можно объединить вместе, если античастицы рассматривать как частицы, движущиеся обратно по времени. А раз так, то допустимо считать, что второй наблюдатель увидит процесс, в котором атом серы испускает антитахион, а атом урана его поглощает. И никакого противоречия нет.
Тем не менее если судить «по большому счету», то противоречия все же остаются. Дело в том, что ни один сверхсветовой процесс нельзя изолировать от окружающей «досветовой» обстановки. Это можно сделать лишь в теории, а в реальном мире всякое явление бесконечным числом связей скреплено с окружающими телами. Полностью отгородиться от них невозможно. Так устроен мир. Неисчерпаемость свойств и взаимосвязей — одна из основных его характеристик. Поэтому изменение направления времени в сверхсветовом процессе неизбежно приходит в противоречие со «стрелой времени», определяемой движением досветовых тел и происходящими с ними событиями. При этом возникают похожие на чудо ситуации, в которых нарушена причинная связь событий. Следствие может опередить вызывающую его причину!
Допустим, например, что охотник тахионной пулей поражает сидящую на столбе ворону. Космонавт же в иллюминатор пролетающей мимо ракеты увидит, что по какой-то непонятной причине из вороны вылетела тахионная пуля, которая была поймана ружьем охотника. А главное, тот каким-то образом заранее точно знал, в какую сторону и под каким углом ему следует направить ствол ружья, чтобы поймать шарик тахионного вещества! Космонавту все это покажется подлинным чудом.
Как избавиться от нарушений причинности в процессах с тахионами — остается неясным. Недавно итальянским физикам удалось показать, что нарушение причинности всегда сопровождается нарушением законов сохранения энергии и импульса. Другими словами, если требовать точного выполнения этих законов, то нарушающие причинность взаимодействия просто не должны осуществляться, и физическое тело по отношению к тахионам будет вести себя как абсолютно прозрачное. К сожалению, это не устраняет всех противоречий. Итальянские ученые предполагали, что тахион взаимодействует сразу со всем телом. Однако если невозможно взаимодействие тахиона с телом как целым, то может произойти взаимодействие с его частью или наоборот, и трудность с причинностью остается.
Результат итальянских физиков можно считать теоретическим доказательством того, что в больших, макроскопических областях пространства и времени тахионов нет, так как иначе нарушалась бы не только причинность, но и законы сохранения энергии-импульса. И тахионы, если они все же существуют в природе, по-видимому, не могут выходить за пределы ультрамалых пространственно-временных областей, где нельзя установить строгой временной последовательности событий. Зависимость временного порядка от системы координат в этом случае, уже не будет нарушать причинность. Опыты с распадами элементарных частиц действительно указывают, что в субмикроскопических областях, меньших 10~17 сантиметра и 10~27 секунды, противопоставление прошлого и будущего становится весьма неопределенным или же имеет смысл, весьма далекий от того, к чему мы привыкли в нашем микромире.
При этом, конечно, возникает вопрос — что же удерживает тахионы в ультрамалых областях, не дает им разлетаться? Тахионы останутся там запертыми, если, например, они — короткоживущие частицы и обладают способностью самоускоряться. Их время жизни уменьшается с увеличением скорости, поэтому, самоускоряясь, они будут распадаться почти сразу же вблизи точки своего рождения. Могут быть и другие причины «пленения» сверхсветового вещества — природа неистощима на выдумки.
Как бы там ни было, в настоящее время нет никаких — ни философских, ни «чисто физических»— запретов участию тахионов в явлениях микромира и, соответственно, обращению там направления времени. А вот существуют ли они на самом деле, такие удивительные объекты и явления,— здесь слово за экспериментом.

Поиски сверхсветовых эффектов
Понятно, что обнаружить тахионы можно лишь по следам, которые они оставляют в окружающем веществе. Но могут ли вообще частицы со столь необычными свойствами взаимодействовать с обычным, досветовым веществом наших приборов? Некоторые ученые считают, что не могут. Если это так, то тахионы — ненаблюдаемые объекты, а досветовой и сверхсветовой миры оторваны один от другого — у них просто нет точек соприкосновения. Трудно, однако, думать, что в природе, где все взаимосвязано и взаимообусловлено, могут существовать материальные тела, которые ничем себя не проявляют и принципиально не наблюдаемы. Если же между тахионами и досветовым веществом есть взаимодействие, то тахионы должны рождаться при столкновениях досветовых частиц, и можно попытаться зафиксировать их с помощью имеющихся в нашем распоряжении средств.
Таких опытов выполнено уже немало. В ряде случаев отмечались эффекты, которые в принципе можно было бы приписать сверхсветовым частицам. Однако всегда удавалось найти и более привычные объяснения. Например, английские физики изучали распространение ливней вторичных частиц, образуемых в земной атмосфере высокоэнергетическими частицами космического излучения. Во многих ливнях детекторы зафиксировали сигналы, значительно опережающие приход лавины частиц. Этот результат можно объяснить, допустив, что в ливне присутствуют частицы со скоростями намного большими, чем у остальных. А поскольку скорость большинства частиц в ливне близка к скорости света, это, казалось бы, подтверждает присутствие тахионов. К сожалению, более детальный анализ показал, что, сделав некоторые дополнительные предположения, не выходящие за рамки известной досветовой физики, опережающие сигналы детектора можно объяснить причинами технического характера — как неточные, ложные выбросы.
Особенно часто сверхсветовые аномалии возникают в астрономических наблюдениях, где детали движения изучаемых объектов бывают плохо известны. Так, недавно в печати сообщалось о наблюдении астрофизиками Массачусетсского технологического института в США сверхсветовых выбросов из квазаров — излучающих огромную энергию космических объектов на краю видимой нами части Вселенной. Из сравнения двух фотографий, сделанных с интервалом примерно в один год, получен вывод, что выбросы удаляются от квазаров со скоростью, в несколько раз превосходящей световую. Тем не менее последующий анализ обнаружил такие особенности процессов, которые устранили противоречия с «досветовой физикой». Сверхсветовой эффект оказался иллюзией.
Интересный опыт по поиску тахионов в микропроцессах выполнили американские физики. Они допустили, что тахионы взаимодействуют с протонами, мезонами и другими ядерными частицами, но время их жизни чрезвычайно мало. Поэтому следы их рождения можно заметить лишь по специфическим искажениям распределений других частиц по импульсам и углам вылета. При тщательной обработке экспериментальных данных действительно обнаружены некоторые аномалии в распределениях вторичных частиц, рождающихся в реакциях. Эти данные хорошо объяснялись, если предположить, что сталкивающиеся досветовые частицы в ходе реакции обмениваются тахионами с массой, несколько превышающей массу протона, и временем жизни около 10^24 секунды. Однако и в этом случае однозначный вывод о рождении тахионов сделать нельзя — результаты наблюдений можно объяснить и с помощью известных теорий. По мнению выполнявших эксперимент физиков, такое объяснение более сложно, но... срабатывает знаменитая «бритва Оккама»— принцип «не вводить сущностей сверх необходимого». Были выполнены и другие эксперименты. Ни один из них яе дал убедительных доказательств существования в природе сверхсветовых явлений. Но они не доказали и обратного, поскольку во всех опытах есть особенности, которыми можно, хотя бы отчасти, объяснить их неудачу.

Каков же вывод?
Мы видим, что невозможность изменить направление времени уходит своими корнями в самые фундаментальные свойства материального мира,— неисчерпаемость его внутренних взаимосвязей и их причинную обусловленность. В конечном счете, именно эти свойства запрещают путешествия в машине времени, о которых так часто рассказывается в научно-фантастических романах. Наблюдать изменение порядка событий в зависимости от скорости регистрирующих приборов, возможно, удастся лишь внутри субмикроскопических пространственно-временных инвервалов.
Что же касается сверхсветовых скоростей, то здесь дело сложнее,— вообще говоря, они могут быть и в области макроскопических явлений. Не следует забывать, что вывод об их связи с обращением времени получен на основе формул теории относительности, которые могут оказаться несправедливыми вблизи светового барьера, где концентрация энергии возрастает «почти до бесконечности». Абсолютный нуль и бесконечность всегда были источниками новых открытий. В окрестностях светового барьера, возможно, потребуется обобщение теории, тогда условия причинности для сверхсветовых частиц могут стать совсем иными и не будут приводить к противоречиям. Хотя такая возможность сегодня кажется маловероятной, но все же... Вешая знак «кирпич» на дорогах физики, следует быть осторожным. Наука не раз демонстрировала нам, как переход в область новых явлений открывает процессы, казавшиеся ранее совершенно недопустимыми.