Высокочастотные усилители радиочастоты. Как работает усилитель звуковой частоты Транзисторные усилители радиочастоты

Количественные характеристики этих требований различны для УРЧ различных диапазонов. Под неустойчивой работой при этом понимаются изменения основных параметров и характеристик усилителя вплоть до перехода в режим самовозбуждения во времени под действием различных дестабилизирующих факторов. рис. Часть этого напряжения по цепям питания проникает в предыдущие каскады в частности во входные их цепи через элементы...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ЛЕКЦИЯ 5

  1. Усилители радиочастоты и малошумящие усилители

2.4.1 Общие сведения об усилителях радиочастоты

Усилителем радиочастоты (избирательным) называют усилители, у которых в качестве нагрузки используются частотно избирательные цепи, в результате чего коэффициент усиления становится также частотнозависимым. В простейшем случае в качестве такой цепи применяется колебательный контур. ИУ предназначены для обеспечения высокой чувствительности РПУ за счёт предварительного усиления радиосигнала и его селекции на фоне помех. Применение резонансных систем необходимо для обеспечения требуемой избирательности приёмника по зеркальному и прямому каналам приема.

Основными качественными показателями избирательных усилителей являются:

  • Резонансный коэффициент усиления по напряжению;
  • Избирательность по побочным каналам приема;
  • Коэффициент шума ;
  • Динамический диапазон.

Здесь – максимальное входное напряжение, при котором нелинейные искажения еще не превышают допустимого значения; – входное напряжение, при котором на выходе усилителя обеспечивается требуемое отношение с/ш.

В силу решаемых ими задач к УРЧ предъявляются следующие требования:

Обеспечение частотной избирательности по дополнительным каналам приема (прямому, зеркальному, комбинационным);

Обеспечение требуемого коэффициента шума;

Обеспечение требуемого устойчивого коэффициента усиления, необходимого для доведения уровня принимаемых сигналов до величины, необходимой для нормальной работы последующих каскадов.

Количественные характеристики этих требований различны для УРЧ различных диапазонов. Как известно, в диапазонах ДВ, СВ и КВ, чувствительность определяется уровнем внешних шумов, поступающих на вход приемника. В этих условиях высокий коэффициент усиления не требуется, поэтому обычно используют не более двух каскадов с общим К 0 = 2…5. Основное внимание уделяется обеспечению избирательности по прямому и зеркальному каналам приема, а также обеспечению высокой линейности каскадов для исключения возникновения комбинационных каналов приема и интермодуляционных искажений.

В качестве нагрузки используются одно и двухконтурные системы, так как более сложные затрудняют перестройку по диапазону. Предпочтение отдается применению полевых МДП-транзисторов, обеспечивающих лучшую линейность каскадов.

В диапазонах ДМВ и выше чувствительность определяется уже собственными шумами. Здесь очень важно обеспечить требуемое значение коэффициента шума. Чувствительность приемников в этих диапазонах может достигать единиц микровольт, поэтому требуется большое усиление во входных каскадах. Обычно используется 1…3 каскада с общим К 0 = 100…200, часто неперестраиваемые, так как значения промежуточной частоты в этом случае выбирается достаточно высоким и легко обеспечивается подавление побочных каналов приема во всем принимаемом диапазоне. Для снижения коэффициента шума могут применяться усилители на туннельных диодах и параметрические усилители.

2.4.2 Схемы включения активных элементов

2.4.3 Устойчивость и самовозбуждение УРЧ

А) Факторы, влияющие на устойчивость

Как известно, при ПОС коэффициент усиления усилителя описывается выражением

, (3.1)

где - коэффициент передачи цепи обратной связи. Произведение называют петлевым усилением каскада. Согласно критерию Найквиста каскад находится на пороге генерации (самовозбуждения) при условии =1, или, что то же самое,

(3.2)

Это условие распадается на два

1) , (3.3)

т.е. суммарный набег фазы по пути от входа усилителя до выхода и обратно должен быть кратен 2 (так называемый баланс фаз);

2) =1, (3.4)

т.е. часть сигнала, попадающая обратно на вход усилителя, должна быть равна исходному сигналу (баланс амплитуд).

Рис.3.2 обеспечивающие режим по постоянному току ( U ос на рисунке). При определенных условиях такая обратная связь может оказаться положительной.

Для устранения обратной связи такого типа источник питания шунтируют по переменному току конденсатором большой емкости и применяют фильтры в цепях питания отдельных каскадов (рис.3.3).

Сопротивления фильтров R ф выбирают равными 1…3 кОм. Конденсаторы фильтров – из условия. Конденсаторы необходимо использовать керамические, так как у пленочных и электролитических велика собственная индуктивность из-за того, что конструктивно они выполнены в виде рулонов, содержащих большое количество вит-

Рис.3.3 ков. Конденсаторы устанавливают в непосредственной близости от нагрузочных колебательных контуров, чтобы сократить путь протекания токов высокой частоты.

2. Емкостная связь между выходом и входом одного каскада или между каскадами. Очевидно, что любые два проводника, находящиеся на некотором расстоянии друг от друга, можно рассматривать как конденсатор. Так, например, выводы транзистора длиной около сантиметра могут иметь емкость в пределах 1…10 пф, в зависимости от их взаимного расположения. На высоких частотах это весьма заметная величина.

3. Индуктивная связь между входом и выходом одного каскада или между каскадами.

Для ее уменьшения применяются магнитные экраны (броневые сердечники из ферритов, карбонильного железа и т.п.), минимизируют длину выводов и соединительных проводников. Входные и выходные катушки располагают на как можно большем расстоянии друг от друга, ориентируя их продольные оси во взаимно перпендикулярных плоскостях для уменьшения взаимных индуктивностей.

Правильным выбором средств все вышеперечисленные причины возникновения ПОС можно частично или полностью устранить. Однако всегда остается еще один канал проникновения части выходного сигнала на вход – внутренняя проводимость обратной связи активного элемента Y 12 . У любого реального усилительного прибора она отлична от нуля и устранена быть не может. Её действие можно лишь компенсировать до определенных пределов.

Б) Условия отсутствия самовозбуждения в избирательном усилителе

Рассмотрим для простоты ситуацию, когда источником сигнала для избирательного усилителя и его нагрузкой являются точно такие же каскады (рис.3.4). В этом случае одноименные параметры каскадов одинаковы:

И. (3.5)

Пересчитав выходную проводимость предыдущего каскада сначала в контур, а затем непосредственно ко входу транзистора, получим результирующую проводимость, подключенную ко входу (рис.3.5): . (3.6)

Рис.3.4

Аналогично входная проводимость следующего каскада, приведенная к выходу транзистора, запишется в виде:

. (3.7)

Следует обратить внимание, что U вх на рис.3.4 и U 1 на рис.3.5 - это разные величины, так же как и U вых и U 2 .

Для дальнейшего анализа необходимо получить выражения, описывающие коэффициент передачи усилителя при отсутствии обратной связи () и коэффициент передачи цепи обратной связи (). Для этой цели заменим транзистор в предыдущей

Рис.3.5 схеме на его эквивалент, считая, что проводимость обратной связи в нем отсутствует. Преобразованная схема изображена на рис.3.6.

Коэффициент передачи такой схемы по напряжению определится выражением: . (3.9)

Заметим, что он не равен коэф-

Рис.3.6 фициенту усиления исходного (рис.3.4) усилителя, который определяется выражением:

. (3.10)

Из схемы (рис.3.6) очевидно, что выходное напряжение можно получить, разделив выходной ток на результирующую выходную проводимость:

. (3.11)

Знак "минус" в выражении учитывает противоположность направления протекания тока через проводимости и напряжения на них.

Подставив правую часть этого выражения в числитель формулы (3.9) и сократив дробь на, получим:

. (3.12)

Аналогичные рассуждения позволяют вывести выражение для. Причиной появления на входе усилителя напряжения обратной связи () является выходное напряжение транзистора и проводимость обратной связи. Исключая из рассмотрения прохождение сигнала через усилитель в прямом направлении, т.е. полагая =0, его эквивалентную схему для передачи сигнала обратной связи можно представить в виде, показанном на рис.3.7.

Под воздействием выходного напряжения через входные проводимости будет протекать ток (см. рис.3.7), создавая на них падение напряжения:

. (3.13)

Рис.3.7

Коэффициент передачи цепи обратной связи определим по формуле, подставив в ее числитель правую часть выражения (3.13):

. (3.14)

Формулу для петлевого усиления получим перемножив правые части выражений (3.14) и (3.12):

. (3.15)

Вместо проводимостей иподставим в знаменатель последнего выражения правые части формул (3.6) и (3.7) соответственно:

. (3.16)

Выражение, стоящее в знаменателе в скобках, представляет собой эквивалентную проводимость контура нагрузки избирательного усилителя с пересчитанными в него проводимостями предыдущего и последующего каскадов (см. формулу()) и может быть представлена в виде. С учетом этого, окончательно формулу (3.16) можно переписать в виде:

. (3.17)

В) Баланс фаз и амплитуд

При проектировании избирательных усилителей надлежащим выбором транзистора обычно легко выполнить условие, чтобы граничная частота усиления транзистора минимум в три раза превышала максимальную рабочую частоту усилителя. В этом случае комплексную проводимость прямой передачи можно считать чисто активной, т.е. . Проводимость же обратной связи наоборот – чисто мнимой и образованной внутренней (проходной) емкостью (С 12 ), связывающей выходную и входную области p - n переходов транзистора (для схемы ОЭ это емкость перехода коллектор-база, например. Активная проводимость обратно-смещенного коллекторного перехода при этом пренебрежимо мала). Другими словами, можно записать:. Учтем эти замены в (3.17) и домножим числитель и знаменатель на.

. (3.18)

Компоненты формулы, взятые в фигурные скобки представляют собой квадрат резонансного коэффициента передачи усилителя (см. формулу ()). Произведя соответствующую замену, получим:

. (3.19)

Домножим числитель и знаменатель на величину, комплексно сопряженную со стоящей в знаменателе, и выделим в получившемся выражении действительную и мнимую части в явном виде:

(3.20)

Полученное выражение позволяет проанализировать условия возникновения самовозбуждения в усилителе. Баланс фаз, в соответствии с (3.3), означает равенство нулю коэффициента при мнимой части формулы (3.20):

. (3.21)

Известно, что дробь равна нулю, когда числитель равен нулю, т.е. =0. Первые три сомножителя здесь не могут быть равны нулю, следовательно =0, или =1. Последнее возможно в двух случаях:

; (3.22)

. (3.23)

Обобщенная расстройка равна единице, как известно, на границах полосы пропускания усилителя. Только в этих точках выполняется баланс фаз и возможно самовозбуждение усилителя!

Полученное условие является необходимым, но не достаточным. Условие баланса амплитуд, в соответствии с формулами (3.4) и (3.20), означает:

1. (3.24)

Поскольку в правой части равенства стоит положительная величина, то и левая часть должна быть положительной. Это возможно только при = -1, так как остальные компоненты формулы не могут быть отрицательными. Это ограничение означает, что самовозбуждение возможно только на левой границе полосы пропускания усилителя.

Рассмотренные условия самовозбуждения позволяют сделать вывод, что для обеспечения устойчивой работы усилителя необходимо, чтобы левая часть уравнения (3.24) была меньше единицы. Причем, чем сильнее это неравенство, тем устойчивее усилитель. Для количественной оценки устойчивости вводят понятие коэффициента устойчивости γ, определяя его как

. (3.25)

Очевидно, что при γ =1 в каскаде отсутствует обратная связь (левая часть уравнения (3.4) равна нулю) и усилитель абсолютно устойчив, а при γ =0 выполняются условия самовозбуждения и усилитель превращается в генератор.

На практике обычно задают требуемое значение γ. С его учетом условие устойчивости каскада получим из формулы (3.4):

. (3.26)

Подставив в это выражение значение левой части из (3.24) и положив ξ = -1, получим:

. (3.27)

Поскольку в правой части обеспечены условия устойчивости, то и значение К 0 , стоящее в левой части – есть значение, при котором усилитель устойчив. Обозначим это значение через и выразим его из (3.27) в явном виде:

Или (3.28)

На практике выбирают γ = 0,8…0,9. Для γ = 0,9 формула приобретает вид:

. (3.29)

Для схемы с ОЭ, например, и формула приобретает вид, пригодный для практических расчетов

. (3.30)

Из формулы видно, что для повышения коэффициента устойчивого усиления необходимо выбирать транзистор с большим значением коэффициента передачи по току h 21 , малым входным сопротивлением по переменному току h 11 и как можно меньшим значением проходной емкости С 12 .

Необходимо подчеркнуть, что в любом случае, при наличии ПОС, даже если самовозбуждение отсутствует, АЧХ усилителя искажается. Чем сильнее обратная связь (чем больше), тем сильнее искажается форма резонансной характеристики (рис.3.8).

Рис.3.8

В заключение следует отметить, что для увеличения "прозрачности" рассуждений было использовано много упрощений. В реальных усилителях картина много сложнее, однако, основные причины и закономерности возникновения самовозбуждения те же самые.

Другие похожие работы, которые могут вас заинтересовать.вшм>

6657. УСИЛИТЕЛИ И ГЕНЕРАТОРЫ НА ТРАНЗИСТОРАХ 44.93 KB
Усилители электрического сигнала представляют собой устройства для его усиления по напряжению току или мощности за счет преобразования энергии источника питания в энергию выходного сигнала. усилители имеют входную цепь к которой подключается источник усиливаемого сигнала выходную цепь к которой подключается нагрузка потребитель усиленного сигнала а также цепь питания к которой подключается источник за счет энергии которого происходит усиление сигнала. Характер усиливаемого сигнала определяется его источником....
11950. Висмутовые волоконные лазеры и усилители на двулучепреломляющих световодах с поляризованным выходным излучением для систем телекоммуникаций 152.45 KB
Краткое описание разработки. Преимущества разработки и сравнение с зарубежными аналогами. Основное преимущество разработки в получении новых длин волн генерации в активных волоконных световодах. Форма внедрения разработки.

Для повышения чувствительности и реальной селективности гетеродинного приемника входная цепь должна обеспечивать близкий к единице коэффициент передачи мощности в рабочем диапазоне частот и как можно большее ослабление внедиапазонных сигналов. Все это - свойства идеального полосового фильтра, поэтому и выполнять входную цепь надо в виде фильтра.

Часто применяемая одноконтурная входная цепь хуже всего отвечает предъявляемым требованиям. Для увеличения селективности надо повышать нагруженную добротность контура, ослабляя его связь с антенной и смесителем или УРЧ.

Но тогда почти вся мощность принимаемого сигнала будет расходоваться в контуре и лишь малая ее часть пройдет в смеситель или УРЧ. Коэффициент передачи мощности получится низким. Если же сильно связать контур с антенной и смесителем, упадет нагруженная добротность контура и он будет мало ослаблять сигналы соседних по частоте станций.

А ведь рядом с любительскими диапазонами работают и очень мощные радиовещательные станции.

Одиночный входной контур в качестве преселектора можно использовать на низкочастотных KB диапазонах, где уровни сигналов достаточно велики, в простейших гетеродинных приемниках. Связь с антенной следует сделать регулируемой, а сам контур перестраиваемым, как показано на рис. 1.

В случае помех от мощных станций можно ослабить связь с антенной, уменьшая емкость конденсатора С1, тем самым увеличив селективность контура и одновременно увеличив потери в нем, что эквивалентно включению аттенюатора. Суммарную емкость конденсаторов С2 и СЗ выбирают около 300...700 пФ, данные катушки зависят от диапазона.

Рис.1. Одноконтурная входная цепь.

Значительно лучшие результаты дают полосовые фильтры, согласованные по входу и выходу. В последние годы наметилась тенденция применять переключаемые полосовые фильтры даже на входе широкодиапазонных профессиональных связных приемников. Используют октавные (редко), полуоктавные и четвертьоктавные фильтры.

Отношение верхней частоты их полосы пропускания к нижней равно соответственно 2; 1,41(корень из 2) и 1,19 (корень четвертой степени из 2). Разумеется, чем узкополоснее входные фильтры, тем помехозащищенность широкодиапазонного приемника выше, но число переключаемых фильтров значительно возрастает.

Для приемников, рассчитанных только на любительские диапазоны, число входных фильтров равно числу диапазонов, а их полоса пропускания выбирается равной ширине диапазона, обычно с запасом в 10...30%.

В трансиверах полосовые фильтры целесообразно устанавливать между антенной и антенным переключателем прием/передача. Если усилитель мощности трансивера достаточно широкополосен, как, например, в случае транзисторного усилителя, его выходной сигнал может содержать много гармоник и других внедиапазоиных сигналов. Полосовой фильтр будет способствовать их подавлению.

Требование близкого к единице коэффициента передачи мощности фильтра в этом случае особенно важно. Элементы фильтра должны выдерживать реактивную мощность, в несколько раз превосходящую номинальную мощность передатчика трансивера.

Характеристическое сопротивление всех диапазонных фильтров целесообразно выбрать одинаковым и равным волновому сопротивлению фидера 50 или 75 Ом.


Рис.2. Полосовые фильтры: а - Г-образный; б - П-образный

Классическая схема Г-образного полосового фильтра дана на рис.2,а. Расчет его чрезвычайно прост. Сначала определяется эквивалентная добротность Q = fo/2Df, где fo - средняя частота диапазона, 2Df - полоса пропускания фильтра. Индуктивности и емкости фильтра находятся по формулам:

где R - характеристическое сопротивление фильтра.

На входе и выходе фильтр должен нагружаться сопротивлениями, равными характеристическому, ими могут быть входное сопротивление приемника (или выходное передатчика) и сопротивление антенны.

Рассогласование до 10...20% практически мало сказывается на характеристиках фильтра, но отличие нагрузочных сопротивлений от характеристического в несколько раз резко искажает кривую селективности, в основном в полосе пропускания.

Если сопротивление нагрузки меньше характеристического, ее можно подключить автотрансформаторно, к отводу катушки L2. Сопротивление уменьшится в k2 раз, где k - коэффициент включения, равный отношению числа витков от отвода до общего провода к полному числу витков катушки L2.

Селективность одного Г-образного звена может оказаться недостаточной, тогда два звена соединяют последовательно. Соединять звенья можно либо параллельными ветвями друг к другу, либо последовательными. В первом случае получается Т-образный фильтр, во втором - П-образный.

Элементы L и С соединенных ветвей объединяются. В качестве примера на рис.2,б показан П-образный полосовой фильтр. Элементы L2C2 оетались прежними, а элементы продольных ветвей обьединились в индуктивность 2L и емкость С1/2. Легко видеть, что частота настройки получившегося последовательного контура (так же, как и остальных контуров фильтра) осталась прежней и равной средней частоте диапазона.

Часто при расчете узкополосных фильтров значение емкости продольной ветви С1/2 получается слишком маленьким, а индуктивности - слишком большим. В этом случае продольную ветвь можно подключить к отводам катушек L2, увеличив емкость в 1/k2 раз, а индуктивность во столько же раз уменьшив.


Рис.3. Двухконтурный фильтр.

Встотных фильтрах бывает удобно использовать только параллельные колебательные контура, соединенные одним выводом с общим проводом.

Схема двухконтурного фильтра с внешней емкостной связью показана на рис.3. Индуктивность и емкость параллельных контуров рассчитываются по формулам (1) для L2 и С2, а емкость конденсатора связи должна составить C3=C2/Q.

Коэффициенты включения выводов фильтра зависит от требуемого входного сопротивления Rвх и характеристического сопротивления фильтра R: k2=Rвх/R. Коэффициенты включения с двух сторон фильтра могут быть и разными, обеспечивая согласование с антенной и входом приемника или выходом передатчика.

Для увеличения селективности можно включить по схеме рис.3 три и более одинаковых контуров, уменьшив емкости конденсаторов связи СЗ в 1,4 раза.


Рис.4. Селективность трехконтурного фильтра.

Теоретическая кривая селективности трехконтурного фильтра приведена на рис.4. По горизонтали отложена относительная расстройка x=2DfQ/fo, а по вертикали - ослабление, вносимое фильтром.

В полосе прозрачности (x<1) ослабление равно нулю, а коэффициент передачи мощности - единице. Это понятно, если учесть, что теоретическая кривая построена для элементов без потерь, имеющих бесконечную конструктивную добротность.

Реальный фильтр вносит некоторое ослабление и в полосе пропускания, что связано с потерями в элементах фильтра, главным образом в катушках. Потери в фильтре уменьшаются с увеличением конструктивной добротности катушек Q0. Например, при Q0 = 20Q потери даже в трехконтурном фильтре не превышают 1 дБ.

Ослабление за пределами полосы пропускания прямо зависит от числа контуров фильтра. Для двухконтурного фильтра ослабление равно 2/3 указанного на рис.4, а для одноконтурной входной цепи - 1/3. Для П-образного фильтра рис.3,б пригодна кривая селективности рис.4 без всякой коррекции.


Рис.5. Трехконтурный фильтр - практическая схема.

Практическая схема трехконтурного фильтра c полосой пропускания 7,0...7,5 МГц и его экспериментально снятая характеристика показаны на рис.5 и 6 соответственно.

Фильтр рассчитан по описанной методике для сопротивления R=1,3 кОм, но был нагружен на входное сопротивление смесителя гетеродинного приемника 2 кОм. Селективность немного возросла, но появились пики и провалы в полосе пропускания.

Катушки фильтра намотаны виток к витку на каркасах диаметром 10 мм проводом ПЭЛ 0,8 и содержат по 10 витков. Отвод катушки L1 для согласования с сопротивлением фидера антенны 75 Ом сделан от второго витка.

Все три катушки заключены в отдельные экраны (алюминиевые цилиндрические «стаканчики» от девятиштырьковых ламповых панелек). Настройка фильтра проста и сводится к настройке контуров в резонанс подстроечниками катушек.


Рис.6. Измеренная кривая селективности трехконтурного фильтра.

Особо следует остановиться на вопросах получения максимальной конструктивной добротности катушек фильтров. Не следует стремиться к особой миниатюризации, поскольку добротность растет с увеличением геометрических размеров катушки.

По этой же причине нежелательно использовать слишком тонкий провод. Серебрение провода дает ощутимый эффект лишь на высокочастотных KB диапазонах и на УКВ при конструктивной добротности катушки более 100. Литцендрат целесообразно применять лишь для намотки катушек диапазонов 160 и 80 м.

Меньшие потери в посеребренном проводе и литцендрате связаны с тем, что высокочастотные токи не проникают в толщу металла, а протекают лишь в тонком поверхностном слое провода (так называемый скин-эффект).

Идеально проводящий экран не снижает добротности катушки и к тому же устраняет потери энергии в окружающих катушку предметах. Реальные экраны вносят некоторые потери, поэтому диаметр экрана желательно выбирать равным не менее 2-3 диаметров катушки.

Экран следует выполнять из хорошо проводящего материала (медь, несколько хуже алюминий). Недопустима окраска или лужение внутренних поверхностей экрана.

Перечисленные меры обеспечивают исключительно высокую добротность катушек, реализуемую, например, в спиральных резонаторах.

В диапазоне 144 МГц она может достигать 700...1000. На рис.7 показана конструкция двухрезонаторного полосового фильтра диапазона 144 МГц, рассчитанного на включение в 75-омную фидерную линию.

Резонаторы смонтированы в прямоугольных экранах размерами 25X25X50 мм, спаянных из листовой меди, латуни или пластинок двустороннего фольгированного стеклотекстолита.

Внутренняя перегородка имеет отверстие связи размером 6X12,5 мм. На одной из торцевых стенок закреплены воздушные подстроечные конденсаторы, роторы которых соединены с экраном.

Катушки резонатора бескаркасные. Они выполнены из посеребренного провода диаметром 1,5...2 мм и имеют по 6 витков диаметром 15 мм, равномерно растянутых на длину около 35 мм. Один вывод катушки припаивается к статору подстроечного конденсатора, другой - к экрану.

Отводы ко входу и выходу фильтра сделаны от 0,5 витка каждой кагушки. Полоса пропускания настроенного фильтра немногим более 2 МГц, вносимые потери исчисляются десятыми долями децибела Полосу пропускания фильтра можно регулировать, изменяя размеры отверстия связи и подбирая положение отводов катушек.


Рис.7. Фильтр на спиральных резонаторах.

На более высокочастотных УКВ диапазонах катушку целесообразно заменить прямым отрезком провода или трубки, тогда спиральный резонатор превращается в коаксиальный четвертьволновый резонатор, нагруженный емкостью.

Длину резонатора можно выбрать около л/8, а недостающая до четверти длины волны длина компенсируется подстроечной емкостью.

В особо тяжелых условиях приема на KB диапазонах входной контур или фильтр гетеродинного приемника делают узкополосным, перестраиваемым. Для получения высокой нагруженной добротности и узкой полосы связь с антенной и между контурами выбирается минимальной, а для компенсации возросших потерь применяется УРЧ на полевом транзисторе.

Его цепь затвора мало шунтирует контур и почти не снижает его добротности. Биполярные транзисторы в УРЧ устанавливать нецелесообразно по причине их низкого входного сопротивления и значительно большей нелинейности.

Схема УРЧ

Схема усилителя радиочастоты (УРЧ) показана на рис.8. Двухконтурный перестраиваемый полосовой фильтр на его входе обеспечивает всю требуемую селективность, поэтому в цепи стока транзистора включен неперестраиваемый контур L3C9 малой добротности, зашунтированный резистором R3.

Этим резистором подбирают коэффициент усиления каскада. Ввиду малого усиления нейтрализации проходной емкости транзистора не требуется.


Рис.8. Усилитель радиочастоты.

Контур в цепи стока можно использовать и для получения дополнительной селективности, если шунтирующий резистор исключить, а для снижения усиления сток транзистора подключить к отводу контурной катушки.

Схема такого УРЧ для диапазона 10 м показана на рис.9. Он обеспечивает чувствительность приемника лучше 0,25 мкВ В усилителе можно применить двухзатворные транзисторы КП306, КП350 и КП326, имеющие малую проходную емкость, что способствует устойчивости работы УРЧ с резонансной нагрузкой.


Рис.9. УРЧ на двухзатворном транзисторе.

Режим транзистора устанавливают подбором резисторов R1 и R3 так, чтобы ток, потребляемый от источника питания, составлял 4... 7 мА. Усиление подбирается перемещением отвода катушки L3 и при полном включении катушки достигает 20 дБ.

Контурные катушки L2 и L3 намотаны на кольцах К10X6X4 из феррита 30ВЧ и имеют по 16 витков провода ПЭЛШО 0,25. Катушки связи с антенной и смесителем содержат по 3-5 витков такого же провода. В усилитель легко ввести сигнал АРУ, подав его на второй затвор транзистора. При снижении потенциала второго затвора до нуля усиление уменьшается на 40...50 дБ.

Литература: В.Т.Поляков. Радиолюбителям о технике прямого преобразования. М. 1990г.

Так как усилитель радиочастоты находится на входе радиоприемного устройства, то его шумовые характеристики и динамический диапазон в основном определяют характеристики всего устройства в целом. Именно коэффициент шума усилителя радиочастоты определяет чувствительность радиоприемника.

Усиление сигналов в приёмнике может происходить до преобразователя частоты, т.е. на принимаемой частоте, и после преобразователя - на промежуточной частоте. Усиление на частоте принимаемого сигнала осуществляется с помощью усилителей радиочастоты (УРЧ). Кроме усиления должна обеспечиваться и частотная избирательность. Диапазонные УРЧ должны иметь контуры с переменной настройкой. Они чаще всего выполняются одноконтурными. Активным элементом усилителя служит полевой или биполярный транзистор в дискретном или интегральном исполнении. В усилителях промежуточной частоты предпочтение отдается биполярным транзисторам вследствие обеспечения ими более высокого коэффициента усиления. Усилители радиочастоты УРЧ повышают избирательность по зеркальному каналу и чувствительность приемника. По схемному по-строению УРЧ могут быть апериодическими или резонансными.

Апериодические УРЧ увеличивают лишь отношение сиг-нал/шум и чувствительность приемника. Наиболее часто их приме-няют в транзисторных приемниках прямого усиления на ДВ- и СВ-диапазонах. В качестве нагрузки апериодических УРЧ может служить дроссель, резистор или трансформатор. Резисторный кас-кад УРЧ прост в исполнении и настройке. В трансфор-маторных УРЧ) облегчается согласование выхода одно-го каскада со входом последующего. Кроме того, трансформаторный каскад УРЧ можно легко переделать в рефлексный.

Резонансные УРЧ обеспечивают усиление сигнала и по-вышают не только реальную чувствительность, но и избирательность по зеркальному каналу Транзисторные резонансные УРЧ в диапазонах ДВ, СВ и KB собирают по схеме с ОЭ а в УКВ-диапазоне — по схеме с ОБ.

Каскады УРЧ могут содержать один или два резонансных кон-тура. Усилитель радиочастоты с одним контуром дает меньшее уси-ление, но более прост в изготовлении и настройке. Схемы с индук-тивной связью контуров позволяют изменять связь и получать наи-большее усиление или лучшую избирательность. Изменением связи по диапазону можно несколько компенсировать неравномерность ко-эффициента передачи входных цепей.

Усилители радиочастоты УКВ-диапазона выполняют по каскадным схемам. Они имеют лучшие характеристики, чем обычные УРЧ. Первый тран-зистор включен по схеме с ОЭ, благодаря чему достигается малая входная проводимость усилителя, а второй V2 — по схеме с ОБ, что обеспечивает большой коэффициент устойчивого усиления. По посто-янному току транзисторы включены последовательно, что вызывает необходимость увеличения напряжения источника питания.

По усилению каскодный усилитель эквивалентен однокаскадному усилителю с проводимостью прямой передачи первого транзистора и нагрузкой второго. Каскодная схема используется в усили-телях диапазона метровых волн. Первый каскад схемы выгодно вы-полнять на полевом транзисторе, обладающем низким уровнем шумов и малой «ктивной входной проводимостью, при этом будет меньше шунтироваться избирательная система приемника, включен-ная на входе каскодного усилителя. Во втором каскаде предпочтите-лен дрейфовый транзистор, включаемый по схеме с ОБ и обеспечивающий наибольший устойчивый коэффициент усиления. При таком выполнении каскодной схемы усилителя повышается его коэффици-ент устойчивого усиления, существенно снижается уровень шумов, повышается избирательность тракта радиосигнала приемника, что является их преимуществом.

Аналогичными преимуществами обладают каскадные схемы (низкий уровень шумов и высокий коэффициент, устойчивого усиле-ния) на электронных лампах, обычно триодах, включаемых по схеме общий катод — общая сетка.

Потребляемый ток - 46 мА. Напряжение в цепи смещения V bjas определяет уровень выходной мощности (коэффициент передачи) усилителя

Рис.33.11. Внутреннее строение и цоколевка микросхем TSH690, TSH691

Рис. 33.12. Типовая включения микросхем TSH690, TSH691 в качестве усилителя в полосе частот 300- 7000 МГц

и может регулироваться в пределах 0-5,5 (6,0) В. Коэффициент передачи микросхемы TSH690 (TSH691) при напряжении смещения V bias =2,7 В и сопротивлении нагрузки 50 Ом в полосе частот до 450 МГц составляет 23(43) дБ, до 900(950) МГц - 17(23) дБ.

Практическая включения микросхем TSH690, TSH691 приведена на рис. 33.12. Рекомендуемые номиналы элементов: С1=С5=100- 1000 пФ; С2=С4=1000 пФ; С3=0,01 мкФ; L1 150 нГн; L2 56 нГн для частот не свыше 450 МГц и 10 нГн для частот до 900 МГц. Резистором R1 можно регулировать уровень выходной мощности (можно использовать для системы автоматической регулировки выходной мощности).

Широкополосный INA50311 (рис. 33.13), производимый фирмой Hewlett Packard, предназначен для использования в аппаратуре подвижной связи, а также в бытовой радиоэлектронной аппаратуре, например, в качестве антенного усилителя или усилителя радиочастоты. Рабочий диапазон усилителя 50-2500 МГц. Напряжение питания - 5 В при потребляемом токе до 17 мА. Усредненный коэффициент усиления

Рис. 33.13. внутреннего строения микросхемы ΙΝΑ50311

10 дБ. Максимальная мощность сигнала, подводимого к входу на частоте 900 МГц, не более 10 мВт. Коэффициент шума 3,4 дБ.

Типовая включения микросхемы ΙΝΑ50311 при питании от стабилизатора напряжения 78LO05 приведена на рис. 33.14.

Рис. 33.14. широкополосного усилителя на микросхеме INA50311

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Усилитель радиочастоты (УРЧ)

Усилителем радиочастоты (УРЧ) называется каскад, осуществляющий усиление принимаемых сигналов на их собственных частотах, без изменения спектра.

Функции УРЧ:

Обеспечение усиления сигнала по мощности или по напряжению

Обеспечение эффективной частотной избирательности РПУ

Обеспечение защиты цепи антенны от проникновения частоты гетеродина (в случае проникновения частоты гетеродина в цепи антенны, РПУ начинает работать как маломощный передатчик и будет создавать помехи близко расположенным РПУ).

План выполнения работы по этапу

Выбор схемы усилителя радиочастоты и его обоснование

Электрический расчет параметров элементов контура

Подбор параметров сопротивлений и емкостей

Определение оптимальной величины напряжения источника питания Е с применением функции Parameter Sweep

Определение режимов элементов схемы по постоянному току с применением функции DC Operating Point

Измерение АЧХ усилителя во всем диапазоне изменения емкости переменного конденсатора С с применением функции Parameter Sweep

Анализ влияния температуры окружающей среды в диапазоне от -20 до +60 на АЧХ усилителя с применением функции Temperature Sweep

Статистический анализ влияния производственных допусков элементов усилителя на его АЧХ с применением функций Worst Сase и Monte Carlo

Анализ устойчивости усилителя с применением функции Pole-Zero

Выбор схемы усилителя радиочастоты

В качестве УРЧ я выбираю схему с автотрансформаторной связью на полевых транзисторах, потому что такая схема обладает высоким входным сопротивлением, и не будет оказывать нежелательного влияния на входную цепь и антенну. Будет хорошо согласоваться с входной цепью с емкостной связью. Схема также не содержит трансформаторов

Схема УРЧ с автотрансформаторной связью на полевых транзисторах приведена на рисунке 2.2.1.

Рисунок 2.2.1 - Схема УРЧ с трансформаторной связью на полевых транзисторах.

Электрический расчет параметров элементов контура

Для схем УРЧ с автотрансформаторной связью должны выполняться следующие соотношения:

где Сf в нФ, fmin в МГц, в Rf кОм. Rf обычно выбирают в пределах 0,2-3,0 кОм.

Я возьму Rf =2 кОм. Следовательно, теперь я могу рассчитать Cf:

В итоге, я получил: Cf = 320 пФ, Rf=2 кОм

Подбор параметров элементов сопротивления и емкостей с учетом варианта задания

В качестве значения переменной емкости С я взял 100 пФ. Это значение соответствует резонансной частоте 3,2 МГц, поэтому мне нужно будет подобрать элементы схемы так, чтобы максимум АЧХ находился на этой частоте.

Экспериментально подобранные параметры:

L1a = 3,1 мГн; L1b = 3,1 мГн; R = 50 Ом; Rn = 3 кОм; С= 100 пФ

На рисунке 2.2.2 приведена АЧХ усилителя при подобранных значениях элементов

Рисунок 2.2.2 - АЧХ усилителя (при С=100 пФ)

приемник цепь частотный

Определение оптимальной величины напряжения источника питания Е с применением функции Parameter Sweep

Результаты моделирования приведены на рисунке 2.2.3 и в таблице 2.2.1.

Рисунок 2.2.3 - Изменение параметров устройства

Таблица 2.2.1 - Значения напряжения источника питания

Проанализировав семейство графиков я увидел, что увеличивать напряжение Е больше чем 20 В не имеет смысла (при этом напряжении находится максимум АЧХ из всего семейства), т.к. это не приводит к дальнейшему увеличению максимума АЧХ. Поэтому я беру значение напряжения источника E равным 20 В.

Определение режимов элементов схемы по постоянному току с применением функции DC Operating Point.

Результат анализа схемы с помощью функции DC Operation Point отражен в таблице 2.2.2. В этой таблице отражены значения всех токов и напряжений различных узлов схемы УРЧ. Получены значения напряжений во всех узлах схемы, при закороченных индуктивностях и разорванных емкостях.

Таблица 2.2.2 - результат анализа по постоянному току

Измерение АЧХ усилителя во всем диапазоне изменения емкости переменного конденсатора С с применением функции Parameter Sweep

В моем случае значение емкости будет изменяться от 32 до 100 пФ. При этом должна меняться резонансная частота УРЧ в рабочем диапазоне 3,2 - 7,5 МГц. Семейство АЧХ УРЧ при различных значениях емкости С приведено на рисунке 2.2.4.

Рисунок 2.2.4 - АЧХ усилителя при различных значениях емкости С

Анализ влияния температуры окружающей среды в диапазоне от -20до+60 на АЧХ усилителя с применением функции Temperature Sweep

Мне нужно посмотреть, как будет влиять изменение температуры на АЧХ усилителя. Семейство АЧХ для различных значений температур приведено на рисунке 2.2.5.

Рисунок 2.2.5 - Семейство АЧХ усилителя при различных значениях температуры.

Как видно из графика, температура практически не оказывает влияния на АЧХ усилителя, поэтому все графики наложились друг на друга и их невозможно различить. Это говорит о том, что изменение температуры не будет приводить к нарушению работы схемы.

Статистический анализ влияния производственных допусков элементов усилителя на его АЧХ с применением функций Worst Сase и Monte Carlo

Мне нужно будет рассмотреть, как будут влиять производственные допуски элементов на АЧХ усилителя. Рисунок 2.2.6 иллюстрирует, как будет изменяться АЧХ при допуске на элементы в 4%. Это я делаю с помощью функции Monte Carlo. Описание прохода отражено в таблице 2.2.3.

Рисунок 2.2.6 - Анализ влияния допусков элементов на АЧХ усилителя с помощью функции Monte Carlo

Таблица 2.2.3 - описание анализа Монте-Карло

Проанализировав эти данные, можно сделать вывод, что допуск элементов в 4% недопустим и оказывает значительное влияние на АЧХ усилителя.

Анализ схемы при помощи функции Worst Case отображен на рисунке 2.2.7, описание прохода проведено в таблице 2.2.4.

Рисунок 2.2.7 - Анализ влияния допусков элементов на АЧХ усилителя с помощью функции Worst Case.

Таблица 2.2.4 - Описание проходов анализа Worst Case

Проанализировав графики можно сделать вывод, что допуск элементов 1% практически не влияет на АЧХ усилителя и его резонансную частоту. Поэтому допуск в 1% допустим для данной схемы.

Анализ устойчивости усилителя с применением функции Pole-Zero

Нули и полюса передаточной функции представлены в таблице 2.2.5. Из этой таблицы видно, что нули и полюса имеют отрицательную вещественную часть, следовательно, система является устойчивой.

Таблица 2.2.5 - результат анализа нулей и полюсов

Выводы по разделу:

Перестройка частоты осуществляется конденсатором переменной емкости таким же, что используется во входной цепи. Полученный УРЧ отвечает всем необходимым требованиям, его характеристики не зависят от температуры в заданном диапазоне, почти не зависят от напряжения питания, следовательно, требования к источнику питания не строгие. Кроме того УРЧ был проверен на устойчивость, было оценено влияние допусков элементов на АЧХ усилителя.