Прибор для поиска обрыва в электропроводке. Способы обнаружения скрытой проводки — используем специальные и самодельные приборы Схема искателя обрыва кабеля

Прибор предназначен для поиска электросетей переменного тока под землёй и в каналах бетонных и кирпичных зданий, их местоположение и глубину залегания.

В отключенные кабельные линии перед поиском трассы следует подать напряжение звуковой частоты достаточной мощности, а конец линии временно замкнуть, также следует поступить при возможном механическом повреждении, электромагнитное поле в поврежденном месте всегда в несколько раз выше, чем в исправном участке линии.

Принцип действия прибора основан на преобразовании электромагнитного поля электросети частотой 50 Гц в электрический сигнал, уровень которого зависит от напряжения и тока в проводнике, а также от расстояния до источника излучения и экранирующих факторов грунта или бетона.

Схема прибора состоит из датчика электромагнитного поля BF1, предварительного усилителя на транзисторе VT1, усилителя мощности DA1 и выходного контрольного устройства состоящего из звукового анализатора на наушниках ВA1 , светового пикового индикатора HL1 и гальванического прибора индикации мощности - PA1. Для снижения искажений сигнала электромагнитного поля в схемы усилителей введены цепи отрицательной обратной связи. Использование на выходе мощного усилителя низкой частоты позволяет подключать нагрузку любого сопротивления и мощности.

В схему введены установочные резисторы и регуляторы, позволяющие оптимизировать режим работы схемы устройства. Прибором можно оценить глубину залегания электросети от поверхности земли.

Для электропитания схемы прибора достаточно источника тока типа «Крона» на 9 вольт или КБС на напряжение 2 * 4,5 вольта.

Для устранения случайной разрядки элементов питания в схеме используется двойное выключение: размыканием плюсовой шины питания шины питания при отключении наушников BA1.

Электромагнитный датчик BF1 используется от высокоомных телефонных наушников типа ТОН -1 со снятой металлической мембраной. Он подключен к предварительному усилителю на транзисторе VT1 через разделительный конденсатор C2. Конденсатор С3 снижает уровень высокочастотных помех, особенно радио- помехи. Усилитель на транзисторе VT1 имеет обратную связь по напряжению с коллектора на базу через резистор R1, при повышении напряжения на коллекторе повышается напряжение на базе, транзистор открывается и напряжение коллектора снижается. Питание на усилитель подается через резистор R2 нагрузки с фильтра C1, R4. Резистор R3 в цепи эммитера транзистора VT1 смешает характеристику транзистора и за счёт отрицательного уровня напряжения несколько снижает усиление при пиках сигнала. Предварительно усиленный сигнал электромагнитного поля через конденсатор С4 гальванической развязки поступает на регулятор усиления R5 и далее через резистор R6 и конденсатор С6 на вход (1) аналоговой микросхемы усилителя мощности DA1. Конденсатор С5 снижают частоты более 8000 Гц для лучшего восприятия сигнала.

Усилитель мощности звуковой частоты на микросхеме DA1 с внутренним устройством защиты от коротких замыканий в нагрузке и перегрузки позволяет с хорошими параметрами усилить входной сигнал до величины достаточной для работы нагрузки мощностью до 1 ватта.

Искажения в сигнале вносимые усилителем в процессе работы зависят от значения отрицательной обратной связи. Цепь ОС состоит из резисторов R7,R8 и конденсатора C7. Резистором R7 возможно подстроить коэффициент обратной связи исходя из качественных показателей сигнала.
Конденсатор С9 и резистор R8 устраняют самовозбуждение микросхемы на низких частотах.

Через разделительный конденсатор С10 усиленный сигнал поступает на нагрузку ВА1 , индикатор уровня РА1 и светодиодный индикатор HL1.
Электродинамические наушники подключаются к выходу усилителя через разъём XS1 и XS2 , перемычка в XS1 замыкает цепь подачи напряжения питания с батареи GB1 на схему. Световой индикатор HL1 контролирует наличие перегрузки выходного сигнала.

Гальванический прибор РА1 указывает на уровень сигнала в зависимости от глубины залегания электросети и подключен к выходу усилителя через разделительный конденсатор С11 и умножитель напряжения на диодах VD1-VD2.

В приборе поиска электросетей нет дефицитных радиодеталей: приемник электромагнитного поля BF1 можно выполнить из малогабаритного согласующего трансформатора или электромагнитной катушки.
Резисторы типа С1-4 или МЛТ 0,12 , конденсаторы типа КМ, К53.
Транзистор обратной проводимости КТ 315 или КТ312Б. Диоды импульсные на ток до 300 мА.
Иностранный аналог микросхемы DA1 - TDA2003.
Прибор уровня РА1 использован от индикатора уровня записи магнитофонов на ток до 100мкА.
Светодиод HL1 любого типа. Наушники ВА1 - ТОН-2 или малогабаритные от плееров.

Правильно собранное устройство начинает работать сразу, положив датчик электромагнитного поля на сетевой шнур включенного паяльника установить резистором R7 максимальную громкость сигнала в наушниках, при
среднем положении регулятора R5 «Усиление».

Все радиодетали схемы расположены на печатной плате кроме датчика BF1 , он установлен в отдельной металлической коробочке. Батарея питания - КБС закреплена снаружи корпуса на скобку. Все корпуса с радиокомпонентами закреплены на алюминиевой тросточке.

Испытание прибора поиска электросетей можно начать не выходя из дома, достаточно включить свет одной из ламп и уточнить трассу в стене и потолке от выключателя до лампы, а затем перейти на поиск трасс под землёй во дворе дома.

Литература:
1. И.Семёнов Измерение больших токов. «Радиомир» №7 /2006 год стр.32
2. Ю.А.Мячин 180 аналоговых микросхем. 1993г.
3. В.В.Мукосеев и И.Н. Сидоров Маркировка и обозначение радиоэлементов. Справочник. 2001г.
4. В.Коновалов. Прибор поиска электропроводов - Радио,2007,№5 ,С41.
5. В.Коновалов. А. Вантеев Поиск подземных электросетей, Радиомир №11, 2010, С16.

Третий глаз (Часть 3)

Приборы для поиска и диагностики подземных инженерных коммуникаций

Благодаря многонаправленным антеннам повышается чувствительность приборов и уменьшается вероятность ошибок. Оператору больше нет необходимости ходить зигзагами по исследуемой территории – стоит только нажать на кнопку питания и выбрать тип нужной трассы, и прибор сам найдет ее и отобразит на экране. Такой подход позволяет пользоваться локатором даже работникам с невысокой квалификацией и практически без специального обучения.

Акустические течеискатели (локаторы)

Достаточно широко применяется ряд методов нахождения подземных коммуникаций, основанных на акустической локации. Часто такие методы используются для поиска утечек воды и газа в трубопроводах из любых металлических и неметаллических материалов. Поэтому приборы для поиска утечек так и называются – течеискатели.

Акустический неактивный метод

Вытекая из трубы, жидкость или газ издает шум, который может уловить акустический течеискатель с функцией пассивного обнаружения, иначе говоря – неактивный акустический детектор. Акустические датчики-микрофоны, которые могут быть контактными, прикладываемыми непосредственно к грунту, или бесконтактными, улавливают звуковые волны, распространяющиеся по грунту. Когда оператор подходит к месту утечки, шум становится сильнее. Определив точку, где звук самый сильный, можно установить местонахождение утечки. Этот метод работает при залегании трубопровода на глубине примерно до 10 м.

Если имеется доступ к трубе через смотровые колодцы, можно прослушивать шум, прикрепив микрофон к трубе или рукоятке вентиля, так как звуковые волны лучше распространяются по материалу трубопровода. Этим способом можно выявить участок трубы между двумя колодцами, на котором есть протечка, а далее, по силе звука, к какому из колодцев она ближе. Точность метода невелика, зато им можно выявить утечку на намного большей глубине, чем при прослушивании с поверхности. Если у прибора имеется функция псевдокорреляции, он может по разности силы звука рассчитывать расстояние до места утечки и уточнять результат поиска.

В комплект прибора обычно входят наушники, мощный усилитель звука (усиление до 5000–12 000 раз), фильтр помех, пропускающий звуки только той частоты, которые заложены в его «память», а также электронный блок, который обрабатывает и записывает результаты и может составлять отчеты. Некоторые приборы совместимы с компьютером.

Считается, что использование течеискателей позволяет сократить расходы на устранение аварий на коммунальных трубопроводах до 40–45%.

Однако у акустических течеискателей есть ряд недостатков. Результаты исследований сильно зависят от наличия шумовых помех, поэтому лучше всего они работают в условиях тишины при исследовании трубопроводов неглубокого заложения – до 1,5 м. Впрочем, современные приборы оснащены микропроцессорами цифровой обработки сигнала и фильтрами, отсеивающими шумовые помехи. Необходимо точно знать маршрут прокладки исследуемого трубопровода, чтобы пройти точно над ним и прослушать шум от утечки в разных точках.

Акустический активный метод – по генератору ударов

В ситуации, когда необходимо отыскать неметаллическую трубу и поэтому нельзя использовать электромагнитный трассоискатель, а к какой-то части трубы имеется доступ, одной из альтернатив является звуковой активный метод. В этом случае применяют генератор звуковых импульсов (ударник), который устанавливается в доступном месте на трубе и методом ударного воздействия создает акустические волны в материале трубы, которые затем улавливаются с поверхности земли акустическим датчиком прибора (микрофоном). Таким образом можно определить местоположение трубопровода. Конечно, этот метод можно использовать и на металлических трубах. Дальность действия прибора зависит от разных факторов, таких как глубина заложения и материал трубы, а также вид грунта. Сила и частота ударов могут регулироваться.

Акустический электрический – по звуку электрического разряда

Если в месте повреждения кабеля можно создать искровой разряд с помощью генератора импульсов, то звук от этого разряда можно прослушивать с поверхности грунта микрофоном. Для возникновения устойчивого искрового разряда необходимо, чтобы величина переходного сопротивления в месте повреждения кабеля превышала 40 Ом. В состав генератора импульсов входят высоковольтный конденсатор и разрядник. Напряжение с заряженного конденсатора через разрядник мгновенно передается на кабель, возникшая электромагнитная волна вызывает пробой в месте повреждения кабеля, и раздается щелчок. Обычно генерируется по одному импульсу через несколько секунд.

Этот метод применяют для локации кабелей всех видов с глубиной залегания до 5 м. Применять этот метод для поиска повреждений у кабелей в металлическом рукаве, проложенных открыто, не рекомендуется, так как звук хорошо распространяется по металлической оболочке и точность локализации места будет невысокой.

Ультразвуковой метод

В основе данного метода лежит регистрация ультразвуковых волн, не слышных человеческому уху. При выходе находящихся под высоким давлением (или наоборот – подсосе при высоком разрежении) жидкости или газа из трубопровода через трещины в сварных швах, неплотности в запорной арматуре и уплотнениях возникает трение между молекулами вытекающего вещества и молекулами среды, в результате генерируются волны ультразвуковой частоты. Благодаря коротковолновой природе ультразвука оператор может точно определять местоположение утечки даже при сильном шумовом фоне, в наземных газопроводах и подземных трубопроводах. Также с помощью ультразвуковых приборов обнаруживают неисправности в электрооборудовании – дуговые и коронные разряды в трансформаторах и распределительных шкафах.

В состав ультразвукового течеискателя входят датчик-микрофон, усилитель, фильтр, преобразователь ультразвука в слышимый звук, который транслируется наушниками. Чем ближе микрофон к месту утечки, тем сильнее звук в наушниках. Чувствительность прибора регулируется. На ЖК-экране результаты сканирования отображаются в цифровом виде. В комплект может входить контактный щуп, с помощью которого также можно прослушивать колебания. Для активного выявления мест негерметичности в состав прибора включают генератор (передатчик) ультразвуковых колебаний, который можно поместить в исследуемый объект (например, емкость или трубопровод), излучаемый им ультразвук будет выходить наружу через неплотности и трещины.

Преимущества. Метод простой, для поиска утечек не требуется сложной процедуры, обучение работе с прибором занимает около 1 часа и при этом метод весьма точный: позволяет обнаруживать утечки через мельчайшие отверстия на расстоянии 10 м и более на фоне сильных посторонних шумов.

Корреляционный метод

В данном случае на трубу по обе стороны от места утечки (например, в двух колодцах или на запорной арматуре на поверхности земли) устанавливают два (или больше) датчиков виброакустических сигналов (пьезодатчиков). От датчиков сигнал передается в прибор по кабелям или по радиоканалу. Поскольку расстояние от датчиков до места утечки разное, звук от утечки будет приходить к ним в разное время. По разнице во времени поступления сигнала на датчики электронный блок-коррелятор рассчитывает функцию кросс-корреляции и место нахождения повреждения между датчиками.

Данный метод применяется на сложных для акустического сканирования зашумленных участках, таких как городские и заводские территории.

Точность расчета зависит от точности измерения времени прохождения сигналов прибором, точности измерения расстояния между датчиками и точности значения скорости распространения звука по трубе. Как утверждают специалисты, при правильном проведении данных измерений надежность, чувствительность и точность корреляционного метода значительно превышают результаты других акустических методов: отклонение не более 0,4 м и вероятность обнаружения утечек составляет 50–90%. Точность результата не зависит от глубины залегания трубопровода. Метод очень устойчив к помехам.

Недостаток корреляционного метода состоит в том, что результаты искажаются при наличии неоднородностей в трубах: засоров, изгибов, ответвлений, деформаций, резких изменений диаметра. Корреляционные течеискатели – дорогостоящие и сложные приборы, работать на которых могут только специально подготовленные специалисты.

Газоискатели

Для выявления утечек газов из трубопроводов используются газоискатели. Микронасос, который входит в состав прибора, закачивает пробу воздуха с проверяемого места. Отобранная проба сравнивается с эталонным воздухом (например, методом нагревания спиралью: при нагревании пробы с газом и воздуха температура спирали будет разная), и прибор фиксирует наличие в пробе газа. Также имеются газоискатели (сравнивающие пробу и эталонный воздух) на основе других принципов. Такое оборудование способно уловить газ или другое опасное летучее вещество даже в том случае, если его в воздухе содержится всего 0,002%!

Газоискатель – легкий и компактный, удобный и простой в эксплуатации прибор. Однако он весьма чувствителен к температуре окружающего воздуха: при слишком высокой или низкой температуре его работоспособность снижается и даже может стать нулевой, например при температуре ниже –15 и выше +45 °С.

Комплексные приборы

Как мы видим, у локаторов каждого типа имеются определенные ограничения и недостатки. Поэтому для служб, эксплуатирующих подземные коммуникации, современные трассопоисковые приборы часто выполняются комплексными, состоящими из аппаратуры разных типов, например, в них вместе с электромагнитным трассоискателем могут входить акустический локатор, георадар и пирометр, а акустический приемник может иметь еще и канал приема электромагнитных сигналов. Поиск может проводиться одновременно на частотах электромагнитных и радиоволн, либо прибор может переключаться в режимы приема магнитных, радио- или акустических волн. Причем модульная конструкция приборов позволяет комплектовать комплексы индивидуально для каждой компании-клиента в зависимости от его конкретных задач. Использование комплексных приборов повышает вероятность точного нахождения местоположения объекта, облегчает и ускоряет проведение работ по обслуживанию подземных коммуникаций.

Инновации в отрасли оборудования для поиска подземных коммуникаций

Запись координат объектов поиска в GPS/ ГЛОНАСС

У некоторых современных трассопоисковых приборов есть возможность определять координаты обнаруженного объекта по GPS/ ГЛОНАСС и записывать их (даже онлайн) в базу данных цифрового плана участка, созданного методом автоматизированного проектирования CAD, обозначив там выявленные инженерные коммуникации. Параллельно данные поступают на компьютер в головной офис компании. Информация может быть представлена в виде простых меток, которые помогут оператору экскаватора визуально ориентироваться на схеме, показанной на дисплее машины. Еще проще будет работать оператору, если управление экскаватором частично автоматизировано и связано с GPS/ ГЛОНАСС – автоматика поможет избежать повреждения коммуникаций.

Новинки трассопоискового оборудования

Ведущие разработчики данного оборудования предлагают сканеры, которые сканируют стройплощадку и на основе анализа характеристик местного грунта и прочих условий на строительном объекте автоматически указывают оптимальную величину частоты, на которой рекомендуется вести локацию подземных коммуникаций. Для достижения наилучшей чувствительности некоторые трассоискатели оснащаются функцией автоматического подбора оптимальной частоты сигнала – это удобно в условиях «грязного» эфира и когда под землей проходит сразу несколько трасс.

Появились приборы с двумя выходами, которые могут теперь подсоединяться и вести исследования одновременно двух инженерных коммуникаций.

Приборы оснащаются высококонтрастным жидкокристаллическим дисплеем, изображение на котором видно даже при освещении прямыми солнечными лучами, информативность дисплеев повышается: в режиме реального времени отображаются все необходимые параметры: глубина коммуникации, направление движения к ней, интенсивность сигнала и т. п. На экране прибора даже может формироваться наглядная схема расположения коммуникаций, трассоискатель способен одновременно «видеть» до трех подземных коммуникаций, «рисуя» на большом дисплее карту их расположения и пересечений.

Георадары (Подробнее о георадарах см. Часть 1)

Работа георадара основана на излучении электромагнитного импульса в грунт и регистрации отраженного сигнала от подземных объектов и границ среды с разными электрофизическими свойствами.

Области применения георадара огромны: он позволяет определять глубину залегания коммуникаций, местоположение пустот и трещин, зоны переувлажнения и уровень грунтовых вод, характер залегания геологических границ, зоны разуплотнения, незаконные врезки, дефекты земляного полотна, наличие арматуры, мин и снарядов, а также другие объекты.

Основное распространение георадиолокация получила в области поиска подземных коммуникаций, во многом благодаря тому, что этот метод обнаруживает коммуникации из любого материала, в том числе неметаллические.

Для поиска подземных коммуникаций подбирают георадар с антеннами, имеющими среднюю центральную частоту (200–700 МГц). Поиск на таких частотах обеспечивает глубину зондирования до 5 м, а также позволяет находить кабели и трубы малого диаметра.

При необходимости обследования больших территорий используются георадарные системы с массивом антенн, устанавливаемые на транспортное средство. Такие системы сканируют до нескольких гектаров в день.

Современные георадары могут находить подземные коммуникации в режиме реального времени и имеют возможность совместного использования с GPS-оборудованием, что позволяет привязываться к местности и, используя полученные координаты, переносить георадарные данные в CAD-системы, а также наносить обнаруженные коммуникации на имеющиеся схемы.

Долгое время считалось, что георадар – это сложная в понимании и управлении техника, однако с появлением современных технологий и продвинутого программного обеспечения ситуация в корне изменилась. Георадары лидирующих производителей имеют максимальную автоматизацию получения и интерпретации данных, что исключает ошибки, связанные с человеческим фактором. Таким образом, на сегодняшний день георадар является незаменимым помощником в поиске подземных коммуникаций и по праву может считаться «третьим глазом» инженера-изыскателя.

Значимость точной информации.

Информация о местоположении и фактическом состоянии подземных трубопроводов и кабельных линий является самым важным результатом обследования этих коммуникаций.


Достоверность и точность результатов обследования являются единственными характеристиками, которые могут представлять реальную ценность. Неточная или искаженная информация может стать причиной ошибок в интерпретации полученных данных и явиться поводом для ненужных затрат. Еще хуже, если в результате неполных или неточных данных обследования подвергаются опасности жизнь и здоровье людей.


Окончательное заключение о состоянии объекта или его отдельного элемента может быть сделано на основании его визуального обследования, однако, это представляется невозможным для подземных кабелей и труб. Опыт, знание обследуемой рабочей зоны, использование чертежей или схем, а также эффективное использование трассоискателей могут обеспечить получение такой информации, которая позволит дать практически точное заключение о состоянии элементов объекта. В некоторых случаях, могут быть участки, на которых невозможно точно установить состояние коммуникаций. Эти зоны всегда должны быть локализованы для обеспечения возможности проведения дальнейшего обследования.


Локация подземных трубопроводов и кабелей является очень ответственным видом деятельности: все операции должны проводиться методично, аккуратно и с большим вниманием. В данном цикле статей я постараюсь дать структурированную и, по возможности, полную информация о методах использования трассоискателей для получения точных и достоверных данных.


Методы локации подземных кабелей и труб

В настоящее время наибольшее распространение получили следующие методы обнаружения и трассировки подземных кабелей и трубопроводов:

1 Доступная документация

Схемы и чертежи, имеющиеся в коммунальных службах или городской администрации, содержат огромное количество информации о наличии и положении подземных труб и кабелей. При проведении обследования местности в первую очередь важно получить любую доступную информацию и имеющуюся документацию. Информация может быть (и, как правило, является) неточной или неполной, однако эта информация будет являться той самой отправной точкой для оператора при выполнении обследования местности. Кроме того, намного проще подтвердить или дополнить имеющуюся информацию, чем начинать обследование местности «вслепую». До начала проведения работ на объекте очень полезной может оказаться любая информация, даже если она только позволяет приблизительно узнать, чего можно ожидать на объекте.


2 Георадары

Георадар — радиолокатор, который в отличие от классического, используется для зондирования исследуемой среды, а не воздушного пространства. Исследуемой средой может быть земля (отсюда наиболее распространенное название — георадар), вода, стены зданий и т. п.


Современный георадар представляет собой сложный геофизический прибор, создаваемый при соблюдении определенных технологий. Основной блок состоит из электронных компонентов, выполняющих следующие функции: формирование импульсов, излучаемых передающей антенной, обработка сигналов, поступающих с приемной антенны, синхронизация работы всей системы. Таким образом, георадар состоит из трех основных частей: антенной части, блока регистрации и блока управления. Антенная часть включает передающую и приемную антенны. Под блоком регистрации понимается ноутбук или другое записывающее устройство, а роль блока управления выполняет система кабелей и оптико-электрических преобразователей (по материалам Wikipedia).


Георадар

Методы поиска подземных коммуникаций, основанные на использовании электромагнитных волн, были разработаны для точного обнаружения, определения габаритов и расстояния (глубины залегания) до подземных объектов. Локация подземных коммуникаций, в частности пластиковых трубопроводов или волоконно-оптических кабелей связи стала разумным и естественным развитием этого метода. Очевидно, что с помощью радара достаточно трудно (в большинстве случаев, практически невозможно) отличить пластиковые трубы с водой от плотного грунта (например, влажная глина и земля). Однако георадары позволяют получить приблизительную картину расположения подземных кабелей и труб в различных типах грунтов. При этом, даже в благоприятных условиях применения радаров необходимо иметь соответствующее представление о том, что находиться или должно находиться под землей.


Высокая проводимость мелкозернистых осадочных пород – глин и наносов – резко снижают возможности прибора, а скальные и разнородные осадочные породы рассеивают его сигнал. Высокий уровень грунтовых вод также может отрицательно повлиять на результаты обследования. Также стоит отметить, что информация, получаемая по результатам работы георадара, очень сложна и требует интерпретации специалистом высокой квалификации и с большим опытом. Сложность, высокая стоимость и зависимость от условий применения приводят к нецелесообразности использования этого метода для ежедневной работы. Однако, вполне вероятно, что в самом ближайшем будущем этот метод станет полезным при составлении схем подземных коммунальных коммуникаций.


3 Акустическая локация

Акустические методы получили наибольшее распространение при поиске утечек воды в подземных трубопроводах. Однако, разновидность этого метода получила достаточно широкое распространение для трассировки подземных водопроводов, в особенности пластиковых трубопроводов. Сейчас применение этого метода ограничено обнаружением и локацией водопроводов, тем не менее дальнейшее развитие подобных методов может расширить сферу их применения, в частности, для использования при трассировке подземных пластиковых газовых труб.


4 Инфракрасная термография

Температура подземных кабелей и труб может быть отличной от температуры окружающего грунта. Определение этой разности температур может быть достаточно эффективным методом локации подземных труб и кабелей. Однако, эффективность этого метода сильно зависит от окружающих условий и значительно снижается в результате воздействия таких факторов, как солнечный свет или ветер. На практике эти методы имеют узкоспециальное применение - поиск пустот в канализационных коллекторах, а также - локация разрывов, трещин и мест повреждений изоляционного покрытия на отдельных участках теплотрасс.


5 Лозоискательство

Это самый старый способ поиска воды и подземных трубопроводов. Для поиска лозоискателями используется ветка дерева или лоза, а также ее многочисленные варианты в виде сварочных электродов и т.п. Этот интересный способ требует специфических навыков и интуиции. Я лично неоднократно наблюдал работу таких «умельцев» и могу сказать, что результаты их работы меня впечатлили. Однажды специалист одного из Водоканалов прошел по трассе силового кабеля с двумя электродами, показав направление кабеля и муфты. Длина трассы была порядка 130 метров, кабель часто менял свое направление, параллельное обследование с помощью электромагнитного трассоискателя полностью подтвердило результаты, полученные с помощью электродов. Конечно, трудно ожидать широкого использования этого метода, а к достоинствам следует отнести низкую стоимость и небольшой вес оборудования;-)


6 Электромагнитная локация

Это универсальный и самый распространенный метод локации и трассировки подземных коммуникаций. Достоинством этого метода является возможность получения "из под земли" большого объема информации, которая не может быть получена при использовании любой другой технологии. Этот метод имеет следующие отличительные черты:

Поиск с поверхности земли границ зон залегания подземных кабелей и труб;
- Трассировка и идентификация определенных линий;
- Трассировка и идентификация канализационных коллекторов или других неметаллических каналов и труб, к которым есть доступ; локализация закупорки и повреждений (с использованием миниатюрного проталкиваемого передатчика-«зонда»;
- Измерение глубины залегания (расстояния от поверхности грунта до центра электромагнитного поля вокруг коммуникации) непосредственно с поверхности земли;
- Портативность и небольшой вес оборудования (легко удерживается в руках) и возможность эффективного использования даже неопытными операторами;
- Возможность использования трассоискателей с любыми типами грунта и даже под водой;

  • " onclick="window.open(this.href," win2 return false > Печать

Существуют способы обнаружения скрытой проводки «на­родными» методами, без специальных приборов. Например, можно включить на конце этой проводки большую нагрузку и искать по отклонению компаса или с помощью катушки провода с сопротивле­нием около 500 Ом с разомкнутым магнитопроводом подключенной на микрофонный вход любого усилителя (музыкальный центр, магни­тофон и др.), сделав максимальную громкость. В последнем случае по звуку наводки 50 Гц провод в стене будет обнаружен.

Прибор № 1. Он может использоваться для обнаружения скрытой электропроводки, отыскания обрыва провода в жгуте или кабеле, выявления перегоревшей лампы в электрогирлянде. Это простейшее устройство, состоящее из полевого транзистора, головного телефона и элементов питания. Принципиальная схема прибора представлена на рис. 1. Схему раз­работал В. Огнев из г. Перми.

Рис. 1. Принципиальная схема простого искателя

Принцип действия устройства основан на свойстве канала полевого транзистора изменять свое сопротивление под действием наводок на вывод затвора. Транзистор VT1 - КП103, КПЗОЗ с любым буквенным индексом (у последнего вывод корпуса соединяют с выводом затвора). Телефон BF1 - высокоомный, сопротивлением 1600-2200 Ом. Полярность подключения батареи питания GB1 роли не играет.

При поиске скрытой проводки корпусом транзистора водят по стене и по максимальной громкости звука частотой 50 Гц (если это электропроводка) или радиопередачи (радиотрансляционная сеть) определяют место прокладки проводов.

Место обрыва провода в неэкранированном кабеле (например, сете­вом шнуре какого-либо электро- или радиоприбора), перегоревшую лампу электрогирлянды отыскивают так. Все провода, в том числе и оборванный, заземляют, другой конец оборванного провода соеди­няют через резистор сопротивлением 1-2 МОм с фазным проводом электросети и, начиная с резистора, перемещают транзистор вдоль жгута (гирлянды) до пропадания звука - это и есть место обрыва провода или неисправная лампа.

Индикатором может служить не только головной телефон, но и омметр (изображен штриховыми линиями) или авометр, включенный в этот режим работы. Источник питания GB1 и телефон BF1 в этом случае не нужен.

Прибор № 2. Теперь рассмотрим прибор, выполненный на трех тран­зисторах (см. рис. 2). На двух бипо­лярных транзисторах (VT1, VT3) собран мультивибратор, а на поле­вом (VT2) - электронный ключ.


Рис. 2. Принципиальная схема трехтранзисторного искателя

Принцип действия этого иска­теля, разработанного А. Борисовым, основан на том, что вокруг электри­ческого провода образуется электри­ческое поле - его и улавливает искатель. Если нажата кнопка выключателя SB1, но электрического поля в зоне антенного щупа WA1 нет, либо искатель находится далеко от сетевых проводов, транзистор VT2 открыт, мультивибратор не рабо­тает, светодиод HL1 погашен.

Достаточно приблизить антенный щуп, соединенный с цепью затвора полевого транзистора, к проводнику с током либо просто к сетевому проводу, транзистор VT2 закроется, шунтирование базо­вой цепи транзистора VT3 прекратится и мультивибратор начнет работать.

Начнет вспыхивать светодиод. Перемещая антенный щуп вблизи стены, нетрудно проследить за пролеганием в ней сетевых проводов.

Полевой транзистор может быть любой другой из указанной на схеме серии, а биполярные - любые из серии КТ312, КТ315. Все рези­сторы - МЛТ-0,125, оксидные конденсаторы - К50-16 или другие малогабаритные, светодиод - любой из серии АЛ307, источник пита­ния - батарея «Корунд» либо аккумуляторная батарея напряжением 6-9 В, кнопочный выключательSB1 - КМ-1 либо аналогичный.

Корпусом искателя может стать пластмассовый пенал для хранения школьных счетных палочек. В его верхнем отсеке крепят плату, в ниж­нем - располагают батарею.

Можно регулировать частоту колебаний мультивибратора, а зна­чит, частоту вспышек светодиода, подбором резисторов R3, R5, либо конденсаторов CI, С2. Для этого нужно временно отключить от рези­сторов R3 и R4 вывод истока полевого транзистора и замкнуть кон­такты выключателя.

Прибор № 3. Искатель может быть собран и с использованием генератора на биполярных транзисторах разной структуры (рис. 3). Полевой транзистор (VT2) по прежнему управляет работой генератора при попадании антенного щупа WA1 в элек­трическое поле сетевого про­вода. Антенна нужно изгото­вить из проволоки длинной 80-100 мм.


Рис. 3. Принципиальная схема искателя с генератором на

Транзисторах различной структуры

Прибор № 4. А этот прибор для обнаружения повреждений скры­той электропроводки питается от автономного источника напряже­нием 9 В. Принципиальная схема искателя представлена на рис. 4.


Рис. 4. Принципиальная схема искателя на пяти транзисторах

Принцип работы следующий: на один из проводов скрытой элек­тропроводки подается переменное напряжение 12 В от понижающего трансформатора. Остальные провода заземляют. Искатель включа­ется и перемещается параллельно поверхности стены на расстоянии 5-40 мм. В местах обрыва или окончания провода светодиод гаснет. Искатель может быть также использован для обнаружения поврежде­ний жил в гибких переносных и шланговых кабелях.

Прибор № 5. Детектор скрытой проводки, представленный на рис. 5, выполнен уже на микросхеме К561ЛА7. Схему представляет Г. Жидовкин.


Рис.5. Принципиальная схема искателя скрытой проводки на микросхеме К561ЛА7

Примечание.

Резистор R1 нужен для ее защиты от повышенного напряжения ста­тического электричества, но, как показала практика, его можно и не ставить.

Антенной является кусок обычного медного провода любой толщины. Главное, чтобы он не прогибался под собственным весом, т. е. был доста­точно жестким. Длина антенны определяет чувствительность устройства. Наиболее оптимальной является величина 5-15 см.

Таким устройством очень удобно определять и местопо­ложение перегоревшей лампы в елочной гирлянде - возле нее треск прекращается. А при приближении антенны к электропроводке детек­тор издает характерный треск.

Прибор № 6. На рис. 6 изображен более сложный искатель, имеющий, кроме звуковой, еще и световую индикацию. Сопротивление резистора R1 должно быть не менее 50 МОм.


Рис. 6. Принципиальная схема искателя со звуковой и световой индикацией

Прибор № 7. Искатель, схема которого приведена на рис. 7, состоит из двух узлов:

♦ усилителя напряжения переменного тока, основой которого слу­жит микромощный операционный усилитель DA1;

♦ генератора колебаний звуковой частоты, собранного на инвер­тирующем триггере Шмитта DD1.1 микросхемы К561ТЛ1, частотозадающей цепи R7C2 и пьезоизлучателе BF1.


Рис. 7. Принципиальная схема искателя на микросхеме К561ТЛ1

Принцип действия искателя следующий. При расположении антенны WA1 вблизи от токонесущего провода электросети наводка ЭДС частоты 50 Гц усиливается микросхемой DA1, в результате чего зажигается светодиод HL1. Это же выходное напряжение операцион­ного усилителя, пульсирующее с частотой 50 Гц, запускает генератор звуковой частоты.

Ток, потребляемый микросхемами прибора при питании их от источника напряжением 9 В, не превышает 2 мА, а при включении светодиода HL1 составляет 6-7 мА.

Когда искомая электропроводка расположена высоко, наблюдать за свечением индикатора HL1 затруднительно и вполне достаточно зву­ковой сигнализации. В таком случае светодиод может быть отключен, что повысит экономичность прибора. Все постоянные резисторы - МЛТ-0,125, подстроенный резистор R2 - типа СПЗ-Э8Б, конденсатор CI - К50-6.

Примечание.

Для более плавной регулировки чувствительности, сопротивление резистора R2 следует уменьшить до 22 кОм, а его нижний по схеме вывод соединить с общим проводом через резистор сопротивле­нием 200 кОм.

Антенной WA1 служит площадка фольги на плате размером при­мерно 55x12 мм. Начальную чувствительность прибора устанавли­вают подстроечным резистором R2. Безошибочно смонтированный прибор, разработанный С. Стаховым (г. Казань), в налаживании не нуждается.

Прибор № 8. Этот универсальный прибор-индикатор сочетает в себе два индикатора, позволяя не только определить скрытую про­водку, но и обнаружить любой металлический предмет, находящийся в стене или полу (арматура, старые провода и т. п.). Схема искателя представлена на рис. 8.


Рис. 8. Принципиальная схема универсального искателя

Индикатор скрытой проводки собран на базе микромощного опе­рационного усилителяDA2. При расположении вблизи электропро­водки провода, подключенного на вход усилителя, наводка частоты 50 Гц воспринимается антенной WA2, усиливается чувствительным усилителем, собранным на DA2, и переключает с этой частотой све­тодиод HL2.

Прибор состоит из двух независимых устройств:

♦ металлоискателя;

♦ индикатора скрытой электропроводки.

Рассмотрим работу прибора по принципиальной схеме. На тран­зисторе VT1 собран ВЧ генератор, который вводится в режим воз­буждения регулировкой напряжения на базе VT1 с помощью потен­циометра R6. ВЧ напряжение выпрямляется диодом VD1 и переводит компаратор, собранный на ОУ DA1, в положение, при котором гаснет светодиод HL1 и генератор периодических звуковых сигналов, собран­ный на микросхеме DA1 находится в выключенном состоянии.

Вращением регулятора чувствительности R6 устанавливается режим работы VT1 на пороге генерации, который контролируется выключением светодиода HL1 и генератора периодического сигнала. При попадании в поле индуктивности L1/L2 металлического пред­мета генерация срывается, компаратор переключается в положение, при котором загорается светодиод HL1. На пьезокерамический излу­чатель подается периодическое напряжение частотой около 1000 Гц с периодом около 0,2 с.

Резистор R2 предназначен для установки режима порога генерации при среднем положении потенциометра R6.

Совет.

Приемные антенны WA 7 и WA2 должны быть максимально удалены от руки и находиться в головной части прибора. Часть корпуса, в которой находятся антенны, не должна иметь внутреннего покры­тия фольгой.

Прибор № 9. Малогабаритный металлоискатель. Малогабаритный металлоискатель может обнаруживать скрытые в стенах гвозди, шурупы, металлическую арматуру на расстоянии нескольких санти­метров.

Принцип действия. В металлоискателе использован традиционный метод обнаружения, основанный на работе двух генераторов, частота одного из которых изменяется при приближении прибора к метал­лическому предмету. Отличительная особенность конструкции - отсутствие самодельных намоточных деталей. В качестве катушки индуктивности использована обмотка электромагнитного реле.

Принципиальная схема прибора показана на рис. 9, а.


Рис. 9. Малогабаритный металлоискатель: а - принципиальная схема;

б - печатная плата

Металлоискатель содержит:

♦ LC-генератор на элементе DDL 1;

♦ RC-генератор на элементах DD2.1 и DD2.2;

♦ буферный каскад на DD 1.2;

♦ смеситель на DDI.3;

♦ компаратор напряжения на DD1.4, DD2.3;

♦ выходной каскад на DD2.4.

Работает устройство так. Частоту RC-генератора нужно устанавли­вать близкой к частотеLC-генератора. При этом на выходе смесителя будут присутствовать сигналы не только с частотами обоих генерато­ров, но и с разностной частотой.

Фильтр низкой частоты R3C3 выделяет сигналы разностной частоты, которые поступают на вход компаратора. На его выходе фор­мируются прямоугольные импульсы такой же частоты.

С выхода элемента DD2.4 они поступают через конденсатор С5 на разъем XS1, в гнездо которого вставляют вилку головных телефонов сопротивлением около 100 Ом.

Конденсатор и телефоны образуют дифференцирующую цепочку, поэтому в телефонах будут раздаваться щелчки с появлением каж­дого фронта и спада импульсов, т. е. с удвоенной частотой сигнала. По изменению частоты щелчков можно судить о появлении вблизи прибора металлических предметов.

Элементная база. Вместо указанных на схеме допустимо использо­вать микросхемы: К561ЛА7; К564ЛА7; К564ЛЕ5.

Полярный конденсатор - серий К52, К53, остальные - К10-17, КЛС. Переменный резисторR1 - СП4, СПО, постоянные - МЛТ, С2-33. Разъем - с контактами, замыкающимися при вставленной в гнездо вилке телефонов.

Источник питания - батарея «Крона», «Корунд», «Ника» или ана­логичный им аккумулятор.

Подготовка катушки. Катушку L1 можно взять, например, из электромагнитного реле РЭС9, паспорт РС4.524.200 или РС4.524.201 с обмоткой сопротивлением около 500 Ом. Для этого реле нужно разо­брать и удалить подвижные элементы с контактами.

Примечание.

Магнитная система реле содержит две катушки, намотанные на отдельных магнитопроводах и включенные последовательно.

Общие выводы катушек нужно соединить с конденсатором С1, а магнитопровод также, как и корпус переменного резистора, - с общим проводом металлоискателя.

Печатная плата. Детали устройства, кроме разъема, следует раз­местить на печатной плате (рис. 9, 6) из двустороннего фольгированного стеклотекстолита. Одна из ее сторон должна быть оставлена металлизированной и соединена с общим проводом другой стороны.

На металлизированной стороне нужно закрепить батарею питания и «добытую» из реле катушку.

Выводы катушки реле следует пропустить через раззенкованные отверстия и соединить с соответствующими печатными проводниками. Остальные детали размещаются со стороны печати.

Плату устанавите в корпус из пластмассы или жесткого картона, на одной из стенок которого закрепите разъем.

Наладка металлоискателя. Налаживание устройства следует начи­нать с установки частоты LC-генератора в пределах 60-90 кГц под­бором конденсатора С1.

Затем нужно переместить движок переменного резистора примерно в среднее положение и подбором конденсатора С2 добиться появления в телефонах звукового сигнала. При перемещении движка резистора в ту или иную сторону частота сигнала должна изменяться.

Примечание.

Для обнаружения металлических предметов переменным рези­стором предварительно нужно установить возможно меньшую частоту звукового сигнала.

С приближением к предмету частота начнет изменяться. В зави­симости от настройки, выше или ниже нулевых биений (равенства частот генераторов), или вида металла, частота изменится в большую или меньшую сторону.

Прибор № 10. Индикатор металлических предметов.

При проведении строительных и ремонтных работ нелишней будет информация о наличии и месторасположении различных металлических предметов (гвоздей, труб, арматуры) в стене, полу и т. д. Поможет в этом устройство, описание которого приводится в этом разделе.

Параметры по обнаружению:

♦ большие металлические предметы - 10 см;

♦ труба диаметром 15 мм - 8 см;

♦ винт М5 х 25 - 4 см;

♦ гайка М5 - 3 см;

♦ винт М2,5 х 10 -1,5 см.

Принцип работы металлоискателя основан на свойстве металли­ческих предметов вносить затухание в частотозадающий LC-контур автогенератора. Режим автогенератора устанавливают вблизи точки срыва генерации, и приближение к его контуру металлических пред­метов (в первую очередь ферромагнитных) заметно снижает ампли­туду колебаний или приводит к срыву генерации.

Если индицировать наличие или отсутствие генерации, то можно определять место расположение этих предметов.

Принципиальная схема устройства приведена на рис. 10, а. Оно имеет звуковую и световую индикацию обнаруженного предмета. На транзисторе VT1 собран ВЧ автогенератор с индуктивной связью. Частотозадающий контур L1C1 определяет частоту генерации (около 100 кГц), а катушка связи L2 обеспечивает необходимые условия для самовозбуждения. РезисторамиR1 (ГРУБО) и R2 (ПЛАВНО) можно устанавливать режимы работы генератора.


Рис.10. Индикатор металлических предметов:

А - принципиальная схема; б - конструкция катушки индуктивности;

В - печатная плата и размещение элементов

На транзисторе VT2 собран истоковый повторитель, на диодах VD1, VD2 - выпрямитель, на транзисторах VT3, VT5 - усилитель тока, а на транзисторе VT4 и пьзоизлучателе BF1 - звуковой сигна­лизатор.

При отсутствии генерации ток, протекающий через резистор R4, открывает транзисторыVT3 и VT5, поэтому светодиод HL1 будет светить, а пьезоизлучатель издавать тональный сигнал на резонанс­ной частоте пьезоизлучателя (2-3 кГц).

Если ВЧ автогенератор будет работать, то его сигнал с выхода истокового повторителя выпрямляется, и минусовое напряжение с выхода выпрямителя закроет транзисторы VT3, VT5. Светодиод погаснет, звучание сигнали затора прекратится.

При приближении контура к металлическому предмету амплитуда колебаний в нем будет уменьшаться, либо генерация сорвется. В этом случае минусовое напряжение на выходе детектора будет снижаться и через транзисторы VT3, VT5 начнет протекать ток.

Светодиод зажжется, раздастся звуковой сигнал, что укажет на наличие вблизи контура металлического предмета.

Примечание.

Со звуковым сигнализатором чувствительность устройства выше, поскольку он начинает работать при токе в доли миллиам­пера, в то время как для светодиода необходим значительно боль­ший ток.

Элементная база и рекомендуемые замены. Вместо указанных на схеме, в устройстве можно применить транзисторы КПЗОЗА (VT1), КПЗОЗВ, КПЗОЗГ, КПЗОЗЕ (VT2), КТ315Б, КТ315Д, КТ312Б, КТ312В (VT3 - VT5) с коэффициентом передачи тока не менее 50.

Светодиод - любой с рабочим током до 20 мА, диоды VD1, VD2 - любые из серий КД503, КД522.

Конденсаторы - серий КЛС, К10-17, переменный резистор - СП4, СПО, подстроечные - СПЗ-19, постоянные - МЛТ, С2-33, Р1-4.

Устройство питается от батареи с общим напряжением 9 В. Потребляемый ток составляет 3-4 мА, когда светодиод не горит, и возрастает примерно до 20 мА, когда он зажигается.

Ее ли прибором пользоваться не часто, то выключатель SA1 можно не устанавливать, подавая напряжение на устройство подсоединением батареи питания.

Конструкция катушек индуктивности. Конструкция катуш­ки индуктивности автогенератора показана на рис. 10, б - она аналогична магнитной антенне радиоприемника. На круглый стер­жень 1 из феррита диаметром 8-10 мм и проницаемостью 400-600 надевают бумажные гильзы 2 (2-3 слоя плотной бумаги), на них нама­тывают виток к витку проводом ПЭВ-20,31 катушки L1 (60 витков) и L2 (20 витков) - 3.

Примечание.

Намотку при этом надо проводить в одном на правлении и пра­вильно подсоединить выводы катушек к автогенератору

Кроме того, катушка L2 должна перемещаться по стержню с неболь­шим трением. Обмотку на бумажной гильзе можно закрепить скот­чем.

Печатная плата. Большинство деталей размещается на печатной плате (рис. 10, в) из двустороннего фольгированного стеклотексто­лита. Вторая сторона оставлена металлизированной и используется в качестве общего провода.

Пьезоизлучатель размещен на обратной стороне платы, но его надо изолировать от металлизации с помощью изоленты или скотча.

Плату и батарею следует разместить в пластмассовом корпусе, причем катушку нужно устанавливать как можно ближе к боковой стенке.

Совет.

Для повышения чувствительности устройства плату и бата­рею надо разместить на расстоянии нескольких сантиметров от катушки.

Максимальная чувствительность будет с той стороны стержня, на которой намотана катушка L1. Мелкие металлические предметы удоб­нее обнаруживать с торца катушки, это позволит более точно опреде­лять их месторасположение.

♦ шаг 1 - подобрать резистор R4 (для этого временно отпаять один из выводов диодаVD2 и устанавить резистор R4 такого максимально возможного сопротивления, чтобы на коллекторе транзистора VT5 было напряжение 0,8-1 В, при этом светодиод должен светить, а звуковой сигнал звучать.

♦ шаг 2 - устанавить движок резистора R3 в нижнее по схеме по­ложение и припаять диод VD2, а катушку L2 отпаять, после этого транзисторы VT3, VT5 должны закрыться (светодиод погаснет);

♦ шаг 3 - аккуратно перемещая движок резистора R3 вверх по схеме, добиться открывания транзисторов VT3, VT5 и включе­ния сигнализации;

♦ шаг 4 - устанавить движки резисторов Rl, R2 в среднее поло­жение и припаять катушкуL2.

Примечание.

При приближении L2 вплотную к L1 должна возникнуть генерация, а сигнализация выключиться.

♦ шаг 5 - катушку L2 удалить от L1 и добиться момента срыва генерации, а резисторомR1 ее восстановить.

Совет.

При настройте надо стремиться, чтобы катушка L2 была удалена на максимальное расстояние, а резистором R2 можно было бы доби­ваться срыва и восстановления генерации.

♦ шаг 6 - устанавить генератор на грани срыва и проверить чув­ствительность устройства.

На этом настройка металлоискателя считается завершенной.

Во время ремонтных работ довольно часто приходится сверлить и ломать стены, в которых под штукатуркой проходят электрические кабели. Не всегда есть возможность использовать схему прокладки, но если и есть, то пользы от этого может быть немного – нельзя быть уверенным, что предыдущие владельцы помещения или строители не меняли месторасположение проводов без внесения изменений в схему.

Выходит, обнаружение проводки – это неотъемлемая составляющая не только ремонтных работ, но и быта , т. к. при забивании гвоздя для новой картины можно запросто повредить кабель.

Многие горе-строители при проведении ремонтных работ о проводке не думают вовсе, нарушая тем самым правила техники безопасности. Последствия подобной халатности могут быть самыми плачевными, поэтому желательно предварительно выявить старую проводку, чтобы оградить себя и своих близких от неоправданного риска.

Вот основные причины поиска скрытой проводки:


А теперь – последствия пренебрежительного отношения к технике безопасности:

  • короткое замыкание;
  • неправильное функционирование электрической сети;
  • поражение током;
  • пожар.

В худшем случае такая беспечность приведет к летальному исходу.

Поиск скрытой проводки своими руками: обзор наиболее эффективных методов

Наиболее эффективным способом будет, разумеется, обращение в специализирующуюся фирму – она, применяя профессиональное оборудование и многолетний опыт, не только отыщет все провода, но также предоставит точную схему их пролегания. Но такие фирмы есть далеко не во всех городах, да и подобного рода услуги стоят достаточно дорого, поэтому рассмотрим, как можно самостоятельно найти электрокабель в стене.

Способ первый. Задайте максимальную нагрузку на проводку. Далее возьмите обычный компас и, ориентируясь по отклонениям стрелки, определите место, где идет электропровод.

Способ второй. Можете также смонтировать собственное устройство, состоящее из трех транзисторов – одного полевого и двух биполярных. Первый транзистор будет электроключом, пара других образует мультивибрационную установку. Такой самодельный прибор будет улавливать электромагнитные волны, исходящие от проводов. В случае выявления проводов на приборе загорится лампочка, а сам он начнет вибрировать.

Способ третий. Другой вариант самодельного устройства можно сделать из полевого транзистора, аккумуляторов и головного ТА (телефона, то есть). Для поиска проводки нужно провести транзистором вдоль стены – если прибор издаст звук, значит, кабель найден.

Способ четвертый. Он уместен лишь при капитальном ремонте. Отметим, что он не всегда эффективен и больше подходит для комнат со «старой» отделкой.

Суть его заключается в следующем: необходимо удалить обои или любой другой отделочный материал со стен. Под ним, если повезет, обнаружится полоска, отличающаяся цветом от остальной стены, или представляющая собой неровность. Вероятно, именно там и пролегает электропроводка.

Способ пятый. Классический вариант, который использовался до появления искателей проводки. Радиоприемник нужно настроить на частоту 100 кГц и водить им по поверхности стены. В месте пролегания провода приемник будет издавать характерный шум, напоминающий помехи. Ввиду того что этот способ был популярен в среде профессиональных электриков, нет причин сомневаться в его эффективности.

Обратите внимание! Во время процедуры особое внимание уделяйте розеткам и переключателям –именно возле них преимущественно проходят кабели.

Способ шестой. В данном случае электропроводка выявляется посредством обычного слухового аппарата, дающего возможность прекрасно прослушивать частоты до 50 Гц.

Способ седьмой. В качестве альтернативы радиоприемнику можно использовать микрофон, желательно катушечный электродинамический. Его нужно подключить к любому оборудованию, способному снимать и воспроизводить сигнал. Сама процедура поиска ничем не отличается от аналогичной с использованием приемника.

Способ седьмой. Можно также привязать к веревке небольшой магнит и водить им рядом со стеной. Характерно, что этот способ неэффективен в панельных домах и на потолках.

Способ восьмой. Не стоит расстраиваться, если ни один из способов не увенчался успехом. Всегда можно прибегнуть к надежной технологии поиска электропроводки, демонстрирующей стопроцентный результат. Речь сейчас идет о детекторах скрытой проводки.

Сегодня искатели проводки продаются во всех магазинах электротехники. Проводя таким прибором по стенам, можно запросто выявить не только место пролегания кабелей, но и определить силу напряжения в них.

Обратите внимание! Такие устройства реагируют и на электропроводку, и на металлическую арматуру. Поэтому рекомендуется подключить к электроточке более мощный прибор, чтобы усилить излучение.

Электропроводка под напряжением образует электромагнитное поле. Устройства для ее обнаружения направлены на выявление источников этого поля, а вмонтированные усилители позволяют более точно определить место, где пролегает провод. Но чтобы искатель сумел выполнить свои функции, при прокладке кабелей следует придерживаться некоторых правил.

  1. Кабеля нужно прокладывать только параллельно архитектурным линиям.
  2. Провода горизонтального расположения должны находиться на расстоянии 1,5 см от перекрывающих плит.
  3. Если слой отделки толще 1 см, то кабели следует прокладывать кратчайшим путем.
  4. Если при монтаже не соблюдать этих правил, то обнаружить проводку будет достаточно сложно.

Такие устройства могут различаться по способу обнаружения и сложности конструкции. Ценовой диапазон достаточно широк – от 100 до 3000 рублей.

Обратите внимание! При выявлении проводов искатель может подавать как световые, так и звуковые сигналы.

Ниже приведена классификация обнаружителей по сложности конструкции.

  1. Устройства, которые по принципу действия отдаленно напоминают металлоискатели. Они оборудуются специальной катушкой, образующей небольшое электромагнитное поле. Если в такое поле попадет посторонний электрический или железный предмет, то оно сразу изменится.
  2. Устройства, улавливающие электромагнитные волны, исходящие от проводов под напряжением.
  3. Гибрид предыдущих устройств, который стоит очень дорого, поэтому используется преимущественно профессионалами.

По типу конструкции искатели делятся на:

  • отвертки;
  • тестеры.

Конструкция тестеров намного сложнее, чем отверток. Современные модели оснащаются лазерными указателями и способны обнаруживать не только электропроводку, но и телефонные кабели. Более того, тестеры позволят выявлять даже проводку под землей. Устройства оборудуются подсветкой экрана, фонариком и предохранителями, защищающими от перенапряжения.

Индикационная отвертка – более простой и дешевый аппарат для обнаружения проводки, но он эффективен лишь в тех случаях, когда провода находятся на глубине не более 2 см.

Такую отвертку можно использовать двумя способами:

  • бесконтактный поиск позволяет определить месторасположение проводки;
  • контактный — дает возможность измерить силу напряжения.

Более современные модели отверток оборудуются дисплеем, демонстрирующим данные о напряжении; касаемо остальных устройств, то они используют для уведомления звуковые сигналы.

«Дятел» – самый популярный искатель проводки

В России одним из самых популярных устройств для поиска электропроводки считается «Дятел» (если официально, то E121). Он дает возможность определять место пролегания кабелей под штукатуркой толщиной до 8 см.

Искатель проводки «Дятел»

Технические особенности «Дятла» следующие:

  • работа от напряжения до 380 Вольт;
  • вес – 250 грамм;
  • возможность бесконтактного поиска;
  • возможность поиска проводки, фазных кабелей, сломанных электроприборов и разрывов;
  • мониторинг работы счетчика и предохранителей;
  • четыре режима чувствительности.

Рассмотрим подробнее эти режимы. Ниже указано расстояние от антенны прибора до провода для каждого из них:

  • 1 – 0-1,5 мм;
  • 2 – 10 мм;
  • 3 – 30 мм;
  • 4 – 40 мм.

В комплект с прибором «Дятел» входят чехол, элементы питания и техпаспорт.

Изготовление детектора скрытой электропроводки

Если по тем или иным причинам покупка искателя невозможна, всегда можно изготовить такой прибор своими руками.

Этап первый. Сначала нужно подобрать корпус будущего устройства. Для этого может подойти, например, пластиковый бокс от лампы дневного света.

Этап третий. Затем нужно установить 5-вольтные аккумуляторы, после чего просверлить в корпусе небольшое отверстие и вставить туда светодиодную лампу.

Этап пятый. Остается лишь закрепить крышку и протестировать прибор. О выявлении скрытой электропроводки он будет оповещать загоревшейся лампой.

Обратите внимание! Если проводка прокладывалась в соответствии со всеми требованиями, то она будет идти вертикально либо горизонтально.

Обнаружение обрыва скрытой проводки

Если был поврежден один из скрытых кабелей, то для его поиска можно воспользоваться одним из двух существующих способов.

Способ первый. Вначале нужно узнать, какой именно кабель поврежден – нулевой или фазный. Здесь потребуется отвертка-индикатор, которой нужно проверить все контакты вышедшей из строя электроточки (переключателя или розетки).

В выключенном переключателе под напряжением будет лишь один из контактов, а вот во включенном сразу оба. Касаемо розетки, то в ней в рабочем состоянии под напряжением будет только один контакт. Словом, если фаза точно есть, то можно быть уверенным, что оборвался нулевой провод.

Обратите внимание! Если проводка повреждена в каком-либо недоступном месте, то лучше прибегнуть к помощи специалистов, т. к. самостоятельно найти поврежденный участок вряд ли удастся.

Способ второй. При наличии полного доступа ко всем участкам проводки проблемное место можно выявить обыкновенным тестером. Вот примерная схема проведения работ.

  1. Сначала отключается подача электричества на электрощитке.
  2. Затем на изоляции провода нужно сделать две насечки, обнажив металл, – одну возле вывода из распределительного бокса, вторую в двух метрах от первой.
  3. Далее при помощи тестера следует определить сопротивление на этом участке проводки. Если оно низкое, то обрывов там определенно нет.
  4. Аналогично проверяются следующие участки электропроводки до тех пор, пока не найдется участок без низкого сопротивления.

Выводы

В итоге хотелось бы еще раз отметить важность определения места прохождения электрической линии перед началом ремонтных работ. Если этого не сделать, то последствия такой несерьезности могут быть самыми плачевными, возможно, даже летальными. Поэтому нужно использовать один из описанных способов (желательно, разумеется, искать электропроводку с помощью датчика) даже когда на стену лишь вешается обычная картина.