Обработка результатов измерений с учетом случайных погрешностей. Обработка и анализ результатов измерений

В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет).

Случай 1. Число измерений меньше пяти.

x , определяемый как среднее арифметическое от результатов всех измерений, т.е.

2) По формуле (12) вычисляются абсолютные погрешности отдельных измерений

3) По формуле (14) определяется средняя абсолютная погрешность

.

4) По формуле (15) вычисляют среднюю относительную погрешность результата измерений

5) Записывают окончательный результат по следующей форме:

Случай 2 . Число измерений свыше пяти.

1) По формуле (6) находится средний результат

2) По формуле (12) определяются абсолютные погрешности отдельных измерений

3) По формуле (7) вычисляется средняя квадратическая погрешность единичного измерения

.

4) Вычисляется среднее квадратическое отклонение для среднего значения измеряемой величины по формуле (9).

5) Записывается окончательный результат по следующей форме

Иногда случайные погрешности измерений могут оказаться меньше той величины, которую в состоянии зарегистрировать измерительный прибор (инструмент). В этом случае при любом числе измерений получается один и тот же результат. В подобных случаях в качестве средней абсолютной погрешности принимают половину цены деления шкалы прибора (инструмента). Эту величину иногда называют предельной или приборной погрешностью и обозначают (для нониусных приборов и секундомера равна точности прибора).

Оценка достоверности результатов измерений

В любом эксперименте число измерений физической величины всегда по тем или иным причинам ограничено. В связи с этим может быть поставлена задача оценить достоверность полученного результата. Иными словами, определить, с какой вероятностью можно утверждать, что допущенная при этом оши­бка не превосходит наперед заданную величину ε. Упомянутую вероятность принято называть доверительной вероятностью. Обозначим её буквой .



Может быть поставлена и обратная задача: определить границы интервала , чтобы с заданной вероятностью можно было утверждать, что истинное значение измерений величины не выйдет за пределы указанного, так называемого доверительного интервала.

Доверительный интервал характеризует точность полученного результата, а доверительная вероятность - его надёжность. Методы решения этих двух групп задач имеются и особенно подробно разработаны для случая, когда погрешности измерений распределены по нормальному закону. Теория ве­роятностей даёт также методы для определения числа опытов (повторных измерений), при которых обеспечивается заданная точность и надёжность ожидаемого результата. В данной работе эти методы не рассматриваются (ограничимся только их упоминанием), так как при выполнении лабораторных работ подобные задачи обычно не ставятся.

Особый интерес, однако, представляет случай оценки достоверности результата измерений физических величин при весьма малом числе повторных измерений. Например, . Это именно тот случай, с которым мы часто встречаемся при выполнении лабораторных работ по физике. При решении указанного рода задач рекомендуется использовать метод, в основе которого лежит распределение (закон) Стьюдента.

Для удобства практического применения рассматриваемого метода имеются таблицы, с помощью которых можно определить доверительный интервал , соответствующий заданной доверительной вероятности или решить обратную задачу.

Ниже приведены те части упомянутых таблиц, которые могут потребоваться при оценке результатов измерений на лабораторных занятиях.

Пусть, например, произведено равноточных (в одинаковых условиях) измерений некоторой физической величины и вычислено её среднее значение . Требуется найти доверительный интервал , соответствующий заданной доверительной вероятности . Задача в общем виде решается так.

По формуле с учётом (7) вычисляют

Затем для заданных значений n и находят по таблице (табл. 2) величину . Искомое значение вычисляется на основе формулы

При решении обратной задачи вначале вычисляют по формуле (16) параметр . Искомое значение доверительной вероятности берётся из таблицы (табл. 3) для заданного числа и вычисленного параметра .

Таблица 2. Значение параметра при заданных числе опытов

и доверительной вероятности

n 0,5 0,6 0,7 0,8 0,9 0,95 0.98 0,99 0.995 0,999
1,000 1,376 1,963 3,08 6,31 12,71 31,8 63,7 127,3 637,2
0,816 1,061 1,336 1,886 2,91 4,30 6,96 9,92 14,1 31,6
0,765 0,978 1,250 1,638 2,35 3,18 4,54 5,84 7,5 12,94
0,741 0,941 1,190 1,533 2,13 2,77 3,75 4,60 5,6 8,61
0,727 0,920 1,156 1,476 2,02 2,57 3,36 4,03 4,77 6,86
0.718 0,906 1,134 1,440 1,943 2,45 3,14 3,71 4,32 5,96
0,711 0,896 1,119 1,415 1,895 2,36 3,00 3,50 4,03 5,40
0,706 0,889 1,108 1,397 1,860 2,31 2,90 3,36 3,83 5,04
0,703 0,883 1,110 1,383 1,833 2,26 2,82 3,25 3,69 4,78

Таблица 3 Значение доверительной вероятности при заданном числе опытов n и параметре ε

n 2,5 3,5
0,705 0,758 0,795 0,823
0,816 0,870 0,905 0,928
0,861 0,912 0,942 0,961
0,884 0,933 0,960 0,975
б 0,898 0,946 0,970 0,983
0,908 0,953 0,976 0,987
0,914 0,959 0,980 0,990
0,919 0.963 0,983 0,992
0,923 0,969 0,985 0,993

Обработка результатов косвенных измерений

Очень редко содержание лабораторной работы или научного эксперимента сводится к получению результата прямого измерения. Большей частью искомая величина является функцией нескольких других величин.

Задача обработки опытов при косвенных измерениях заключается в том, чтобы на основании результатов прямых измерений некоторых величин (аргументов), связанных с искомой величиной определённой функциональной зависимостью, вычислить наиболее вероятное значение искомой величины и оценить погрешность косвенных измерений.

Существует несколько способов обработки косвенных измерений. Рассмотрим следующие два способа.

Пусть по методу косвенных измерений определяется некоторая физическая величина.

Результаты прямых измерений ее аргументов х, у, z приведены в табл. 4.

Таблица 4

Номер опыта x y z
n

Первый способ обработки результатов заключается в следующем. С помощью расчетной (17) формулы вычисляют искомую величину по результатам каждого опыта

(17)

Описанный способ обработки результатов применим, в принципе, во всех без исключения случаях косвенных измерений. Однако наиболее целесообразно применять его тогда, когда число повторных измерений аргументов небольшое, а расчётная формула косвенно измеряемой величины сравнительно проста.

При втором способе обработки результатов опытов вначале вычисляют, используя результаты прямых измерений (табл. 4), средние арифметические значения каждого из аргументов, а также погрешности их измерения. Подставив , , ,... в расчетную формулу (17), определяют наиболее вероятное значе­ние измеряемой величины

(17*)

и выполняют оценку результатов косвенных измерений величины.

Второй способ обработки результатов применим лишь к таким косвенным измерениям, при которых истинные значения аргументов от измерения к измерению остаются постоянными.

Погрешности косвенных измерений величины зависят от погрешностей прямых измерений её аргументов.

Если систематические погрешности измерений аргументов исключены, а случайные погрешности измерения этих аргументов не зависят друг от друга (некореллированы), то ошибка косвенного измерения величины определяется в общем случае по формуле:

, (18)

где , , - частные производные; , , – средние квадратические погрешности измерения аргументов , , , …

Относительная погрешность вычисляется по формуле

(19)

В ряде случаев значительно проще (с точки зрения обработки результатов измерений) вычислить вначале относительную погрешность , а затем, используя формулу (19), абсолютную погрешность результата косвенного измерения:

При этом формулы для вычисления относительной погрешности результата составляются в каждом отдельном случае в зависимости от того, каким образом искомая величина связана своими аргументами. Имеются таблицы формул относительных погрешностей для наиболее часто встречающихся видов (структуры) расчётных формул (табл. 5).

Таблица 5 Определение относительной погрешности , допускаемой при вычислении приближенной величины , зависящей от приближённой .

Характер связи главной величины с приближенными величинами Формула для определения относительной погрешности
Сумма:
Разность:
Произведение:
Частное:
Степень:

Изучение нониусов

Измерение длины производится с помощью масштабных линеек. Для увеличения точности измерения пользуются вспомогательными подвижными шкалами - нониусами. Например, если масштабная линейка разделена на миллиметры, т. е. цена одного деления линейки 1 мм , то с помощью нониуса можно повысить точность измерении по ней до одной десятой или более мм .

Нониусы бывают линейными и круговыми. Разберем устройство линейного нониуса. На нониусе делений, которые в сумме равны 1 делению основной шкалы. Если - цена деления нониуса, - цена деления масштабной линейки, то можно написать

. (21)

Отношение называется точностью нониуса. Если, например, b =1 мм , a m =10, то точность нониуса 0,1 мм .

Из рис. 3 видно, что искомая длина тела равна:

где k - целое число делений масштабной линейки; - число делений миллиметра, которое необходимо определить с помощью нониуса.

Обозначим через п - число делений нониуса, совпадающее с любым делением масштабной линейки. Следовательно:

Таким образом, длина измеряемого тела равна целому числу k мм масштабной линейки плюс десятые доли числа миллиметров. Аналогично устроены и круговые нониусы.

Нижняя шкала наиболее распространенного микрометра представляет собой обычную миллиметровую шкалу (рис. 4).

Риски верхней шкалы сдвинуты по отношению к рискам нижней шкалы на 0,5 мм . При повороте микрометрического винта на 1 оборот барабан вместе со всем винтом передвигается на 0,5 мм , открывая или закрывая поочередно риски то верхней, то нижней шкалы. Шкала на барабане содержит 50 делений, таким образом, точность микрометра .

При отсчёте по микрометру необходимо учитывать целое число рисок верхней и нижней шкалы (умножая это число на 0,5 мм ) и номер деления барабана n , который в момент отсчёта совпадает с осью шкалы стебля D , умножая его на точность микрометра. Иными словами, числовое значение L длины из­меряемого микрометром предмета находят по формуле:

(23)

Для того чтобы измерить длину предмета или диаметр отверстия штангенциркулем (рис. 3), следует поместить предмет между неподвижной и "подвижной ножками и или развести выступы по диаметру внутри измеряемого отверстия. Движение перемещающегося устройства штангенциркуля проводится без сильного нажима. Вычисление длины производят по формуле (23), снимая отсчёт по основной шкале и нониусу.

В микрометре для измерения длины предмет зажимают между упором и микрометрическим винтом (рис. 5), вращая последний только с помощью головки , до срабатывания трещотки.

3. Вычислите среднее значение диаметра , среднеквадратическое отклонение по формулам методики обработки результатов прямых измерений (случай 2).

4. Определите границу доверительного интервала для заданной доверительной вероятности (задается преподавателем) и числа опытов n .

Сравните приборную погрешность с доверительным интервалом. В окончательный результат запишите большее значение .

Задание 2 . Определение объема цилиндра с помощью микрометра и штангенциркуля.

1. Измерьте не менее 7 раз диаметр цилиндра микрометром, а высоту штангенциркулем. Результаты измерений запишите в таблицу (табл. 7).

Таблица 7

n

. (27)

Если они отличаются хотя бы на порядок, то берется наибольшая ошибка.

9. Окончательный результат запишите в виде:

. (28)

Примечание . При расчёте приборной ошибки по формуле (25) одновременно учитывается и ошибка, обусловленная округлением чисел, так как они подчиняются одному и тому же закону распределения.

Контрольные вопросы

1. Опишите известные Вам виды измерений.

2. Дайте определение систематической и случайной ошибкам. В чём состоит их основное различие?

3. Какие виды ошибок подчиняются равномерному распределению?

4. Опишите порядок обработки результатов прямых (косвенных) измерений.

5. Почему при измерении объема цилиндра Вам рекомендовалось диаметр измерять микрометром, а высоту - штангенциркулем?

6. Относительная ошибка измерения массы тела составляет 1%, а его скорости-2%. С какой относительной ошибкой можно по таким данным вычислить кинетическую энергию тела?

Лабораторная работа №2

Номер измерения

В основе точных естественных наук лежат измерения. При измерениях значения величин выражаются в виде чисел, которые указывают во сколько раз измеренная величина больше или меньше другой величины, значение которой принято за единицу. Полученные в результате измерений числовые значения различных величин могут зависеть друг от друга. Связь между такими величинами выражается в виде формул, которые показывают, как числовые значения одних величин могут быть найдены по числовым значениям других.

При измерениях неизбежно возникают погрешности. Необходимо владеть методами, применяемыми при обработке результатов, полученных при измерениях. Это позволит научиться получать из совокупности измерений наиболее близкие к истине результаты, вовремя заметить несоответствия и ошибки, разумно организовать сами измерения и правильно оценить точность полученных значений.

Если измерение заключается в сравнении данной величины с другой, однородной величиной, принятой за единицу, то измерение в этом случае называется прямым.

Прямые (непосредственные) измерения – это такие измерения, при которых мы получаем численное значение измеряемой величины либо прямым сравнением ее с мерой (эталоном), либо с помощью приборов, градуированных в единицах измеряемой величины.

Однако далеко не всегда такое сравнение производится непосредственно. В большинстве случаев измеряется не сама интересующая нас величина, а другие величины, связанные с нею теми или иными соотношениями и закономерностями. В этом случае для измерения необходимой величины приходится предварительно измерить несколько других величин, по значению которых вычислением определяется значение искомой величины. Такое измерение называется косвенным.

Косвенные измерения состоят из непосредственных измерений одной или нескольких величин, связанных с определяемой величиной количественной зависимостью, и вычисления по этим данным определяемой величины.

В измерениях всегда участвуют измерительные приборы, которые одной величине ставят в соответствие связанную с ней другую, доступную количественной оценке с помощью наших органов чувств. Например, силе тока ставится в соответствие угол отклонения стрелки на шкале с делениями. При этом должны выполняться два основных условия процесса измерения: однозначность и воспроизводимость результата. эти два условия всегда выполняются только приблизительно. Поэтому процесс измерения содержит наряду с нахождением искомой величины и оценку неточности измерения .

Современный инженер должен уметь оценить погрешность результатов измерений с учетом требуемой надежности. Поэтому большое внимание уделяется обработке результатов измерений. Знакомство с основными методами расчета погрешностей – одна из главных задач лабораторного практикума.

Почему возникают погрешности?

Существует много причин для возникновения погрешностей измерений. Перечислим некоторые из них.

· процессы, происходящие при взаимодействии прибора с объектом измерений, неизбежно изменяют измеряемую величину. Например, измерение размеров детали с помощью штангенциркуля, приводит к сжатию детали, то есть к изменению ее размеров. Иногда влияние прибора на измеряемую величину можно сделать относительно малым, иногда же оно сравнимо или даже превышает саму измеряемую величину.

· Любой прибор имеет ограниченные возможности однозначного определения измеряемой величины вследствие конструктивной неидеальности. Например, трение между различными деталями в стрелочном блоке амперметра приводит к тому, что изменение тока на некоторую малую, но конечную, величину не вызовет изменения угла отклонения стрелки.

· Во всех процессах взаимодействия прибора с объектом измерения всегда участвует внешняя среда, параметры которой могут изменяться и, зачастую, непредсказуемым образом. Это ограничивает возможность воспроизводимости условий измерения, а, следовательно, и результата измерения.

· При визуальном снятии показаний прибора возможна неоднозначность в считывании показаний прибора вследствие ограниченных возможностей нашего глазомера.

· Большинство величин определяется косвенным образом на основании наших знаний о связи искомой величины с другими величинами, непосредственно измеряемыми приборами. Очевидно, что погрешность косвенного измерения зависит от погрешностей всех прямых измерений. Кроме того, в ошибки косвенного измерения свой вклад вносят и ограниченность наших познаний об измеряемом объекте, и упрощенность математического описания связей между величинами, и игнорирование влияния тех величин, воздействие которых в процессе измерения считается несущественным.

Классификация погрешностей

Значение погрешности измерения некоторой величины принято характеризовать:

1. Абсолютной погрешностью – разностью между найденным на опыте (измеренным) и истинным значением некоторой величины

. (1)

Абсолютная погрешность показывает, на сколько мы ошибаемся при измерении некоторой величины Х.

2. Относительной погрешностью равной отношению абсолютной погрешности к истинному значению измеряемой величины Х

Относительная погрешность показывает, на какую долю от истинного значения величины Х мы ошибаемся.

Качество результатов измерений какой-то величины характеризуется относительной погрешностью . Величина может быть выражена в процентах.

Из формул (1) и (2) следует, что для нахождения абсолютной и относительной погрешностей измерений, нужно знать не только измеренное, но и истинное значение интересующей нас величины. Но если истинное значение известно, то незачем производить измерения. Цель измерений всегда состоит в том, чтобы узнать не известное заранее значение некоторой величины и найти если не ее истинное значение, то хотя бы значение, достаточно мало от него отличающееся. Поэтому формулы (1) и (2), определяющие величину погрешностей на практике не пригодны. При практических измерениях погрешности не вычисляются, а оцениваются. При оценках учитываются условия проведения эксперимента, точность методики, качество приборов и ряд других факторов. Наша задача: научиться строить методику эксперимента и правильно использовать полученные на опыте данные для того, чтобы находить достаточно близкие к истинным значения измеряемых величин, разумно оценивать погрешности измерений.

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах) , возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Грубых ошибок следует избегать. Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические.

с лучайные погрешности. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего (рис.1). Погрешности, меняющие величину и знак от опыта к опыту, называют случайными. Случайные погрешности непроизвольно вносятся экспериментатором вследствие несовершенства органов чувств, случайных внешних факторов и т. д. Если погрешность каждого отдельного измерения принципиально непредсказуема, то они случайным образом изменяют значение измеряемой величины. Эти погрешности можно оценить только при помощи статистической обработки многократных измерений искомой величины.

Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов и т. д.) и с самой постановкой опыта. Они сохраняют свою величину (и знак!) во время эксперимента. В результате систематических погрешностей разбросанные из-за случайных погрешностей результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения (рис.2). погрешность каждого измерения искомой величины можно предсказать заранее, зная характеристики прибора.



Расчет погрешностей прямых измерений

Систематические погрешности . Систематические ошибки закономерным образом изменяют значения измеряемой величины. Наиболее просто поддаются оценке погрешности, вносимые в измерения приборами, если они связаны с конструктивными особенностями самих приборов. Эти погрешности указываются в паспортах к приборам. Погрешности некоторых приборов можно оценить и не обращаясь к паспорту. Для многих электроизмерительных приборов непосредственно на шкале указан их класс точности.

Класс точности прибора – это отношение абсолютной погрешности прибора к максимальному значению измеряемой величины , которое можно определить с помощью данного прибора (это систематическая относительная погрешность данного прибора, выраженная в процентах от номинала шкалы ).

.

Тогда абсолютная погрешность такого прибора определяется соотношением:

.

Для электроизмерительных приборов введено 8 классов точности: 0,05; 0,1; 0,5; 1,0; 1,5; 2,0; 2,5; 4.

Чем ближе измеряемая величина к номиналу, тем более точным будет результат измерения. Максимальная точность (т. е. наименьшая относительная ошибка), которую может обеспечить данный прибор, равна классу точности. Это обстоятельство необходимо учитывать при использовании многошкальных приборов. Шкалу надо выбирать с таким расчетом, чтобы измеряемая величина, оставаясь в пределах шкалы, была как можно ближе к номиналу.

Если класс точности для прибора не указан, то необходимо руководствоваться следующими правилами:

· Абсолютная погрешность приборов с нониусом равна точности нониуса.

· Абсолютная погрешность приборов с фиксированным шагом стрелки равна цене деления.

· Абсолютная погрешность цифровых приборов равна единице минимального разряда.

· Для всех остальных приборов абсолютная погрешность принимается равной половине цены деления.

Случайные погрешности . Эти погрешности имеют статистический характер и описываются теорией вероятности. Установлено, что при очень большом количестве измерений вероятность получить тот или иной результат в каждом отдельном измерении можно определить при помощи нормального распределения Гаусса. При малом числе измерений математическое описание вероятности получения того или иного результата измерения называется распределением Стьюдента (более подробно об этом можно прочитать в пособии «Ошибки измерений физических величин»).

Как же оценить истинное значение измеряемой величины?

Пусть при измерении некоторой величины мы получили N результатов: . Среднее арифметическое серии измерений ближе к истинному значению измеряемой величины, чем большинство отдельных измерений. Для получения результата измерения некоторой величины используется следующий алгоритм.

1). Вычисляется среднее арифметическое серии из N прямых измерений:

2). Вычисляется абсолютная случайная погрешность каждого измерения – это разность между средним арифметическим серии из N прямых измерений и данным измерением:

.

3). Вычисляется средняя квадратичная абсолютная погрешность :

.

4). Вычисляется абсолютная случайная погрешность . При небольшом числе измерений абсолютную случайную погрешность можно рассчитать через среднюю квадратичную погрешность и некоторый коэффициент , называемый коэффициентом Стъюдента:

,

Коэффициент Стьюдента зависит от числа измерений N и коэффициента надежности (в таблице 1 отражена зависимость коэффициента Стьюдента от числа измерений при фиксированном значении коэффициента надежности ).

Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.

Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.

Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.

Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.

Таблица 1

Число измерений N

Коэффициент Стъюдента

5). Вычисляется полная абсолютная погрешность. При любых измерениях существуют и случайные и систематические погрешности. Расчет общей (полной) абсолютной погрешности измерения дело непростое, так как эти погрешности разной природы.

Для инженерных измерений имеет смысл суммировать систематическую и случайную абсолютные погрешности

.

Для простоты расчетов принято оценивать полную абсолютную погрешность как сумму абсолютной случайной и абсолютной систематической (приборной) погрешностей, если погрешности одного порядка величины, и пренебрегать одной из погрешностей, если она более чем на порядок (в 10 раз) меньше другой.

6). Округляется погрешность и результат . Поскольку результат измерений представляется в виде интервала значений, величину которого определяет полная абсолютная погрешность, важное значение имеет правильное округление результата и погрешности.

Округление начинают с абсолютной погрешности!!! Число значащих цифр, которое оставляют в значении погрешности, вообще говоря, зависит от коэффициента надежности и числа измерений. Однако даже для очень точных измерений (например, астрономических), в которых точное значение погрешности важно, не оставляют более двух значащих цифр. Бóльшее число цифр не имеет смысла, так как определение погрешности само имеет свою погрешность. В нашем практикуме сравнительно небольшой коэффициент надежности и малое число измерений. Поэтому при округлении (с избытком) полной абсолютной погрешности оставляют одну значащую цифру.

Разряд значащей цифры абсолоютной погрешности определяет разряд первой сомнительной цифры в значении результата. Следовательно, само значение результата нужно округлять (с поправкой) до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности . Сформулированное правило следует применять и в тех случаях, когда некоторые из цифр являются нулями.

Если при измерении массы тела получен результат , то писать нули в конце числа 0,900 необходимо. Запись означала бы, что о следующих значащих цифрах ничего не известно, в то время как измерения показали, что они равны нулю.

7). Вычисляется относительная погрешность .

При округлении относительной погрешности достаточно оставить две значащие цифры.

р езультат серии измерений некоторой физической величины представляют в виде интервала значений с указанием вероятности попадания истинного значения в данный интервал, то есть результат необходимо записать в виде:

Здесь – полная, округленная до первой значащей цифры, абсолютная погрешность и – округленное с учетом уже округленной погрешности среднее значение измеряемой величины. При записи результата измерений обязательно нужно указать единицу измерения величины.

Рассмотрим несколько примеров:

1. Пусть при измерении длины отрезка мы получили следующий результат: см и см. Как грамотно записать результат измерений длины отрезка? Сначала округляем с избытком абсолютную погрешность, оставляя одну значащую цифру см. Значащая цифра погрешности в разряде сотых. Затем округляем с поправкой среднее значение с точностью до сотых, т. е. до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности см. Вычисляем относительную погрешность

.

см; ; .

2. Пусть при расчете сопротивления проводника мы получили следующий результат: и . Сначала округляем абсолютную погрешность, оставляя одну значащую цифру . Затем округляем среднее значение с точностью до целых . Вычисляем относительную погрешность

.

Результат измерений записываем так:

; ; .

3. Пусть при расчете массы груза мы получили следующий результат: кг и кг. Сначала округляем абсолютную погрешность, оставляя одну значащую цифру кг. Затем округляем среднее значение с точностью до десятков кг. Вычисляем относительную погрешность

. .

Вопросы и задачи по теории погрешностей

1. Что значит измерить физическую величину? Приведите примеры.

2. Почему возникают погрешности измерений?

3. Что такое абсолютная погрешность?

4. Что такое относительная погрешность?

5. Какая погрешность характеризует качество измерения? Приведите примеры.

6. Что такое доверительный интервал?

7. Дайте определение понятию «систематическая погрешность».

8. Каковы причины возникновения систематических погрешностей?

9. Что такое класс точности измерительного прибора?

10. Как определяются абсолютные погрешности различных физических приборов?

11. Какие погрешности называются случайными и как они возникают?

12. Опишите процедуру вычисления средней квадратичной погрешности.

13. Опишите процедуру расчета абсолютной случайной погрешности прямых измерений.

14. Что такое «коэффициент надежности»?

15. От каких параметров и как зависит коэффициент Стьюдента?

16. Как рассчитывается полная абсолютная погрешность прямых измерений?

17. Напишите формулы для определения относительной и абсолютной погрешностей косвенных измерений.

18. Сформулируйте правила округления результата с погрешностью.

19. Найдите относительную погрешность измерения длины стены при помощи рулетки с ценой деления 0,5см. Измеренная величина составила 4,66м.

20. При измерении длины сторон А и В прямоугольника были допущены абсолютные погрешности ΔА и ΔВ соответственно. Напишите формулу для расчета абсолютной погрешности ΔS, полученной при определении площади по результатам этих измерений.

21. Измерение длины ребра куба L имело погрешность ΔL. Напишите формулу для определения относительной погрешности объема куба по результатам этих измерений.

22. Тело двигалось равноускоренно из состояния покоя. Для расчета ускорения измерили путь S, пройденный телом, и время его движения t. Абсолютные погрешности этих прямых измерений составили соответственно ΔS и Δt. Выведите формулу для расчета относительной погрешности ускорения по этим данным.

23. При расчете мощности нагревательного прибора по данным измерений получены значения Рср = 2361,7893735 Вт и ΔР = 35,4822 Вт. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

24. При расчете величины сопротивления по данным измерений получены следующие значения: Rср = 123,7893735 Ом, ΔR = 0,348 Ом. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

25. При расчете величины коэффициента трения по данным измерений получены значения μср = 0,7823735 и Δμ = 0,03348. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

26. Ток силой 16,6 А определялся по прибору с классом точности 1,5 и номиналом шкалы 50 А. Найдите абсолютную приборную и относительную погрешности этого измерения.

27. В серии из 5 измерений периода колебаний маятника получились следующие значения: 2,12 с, 2,10 с, 2,11 с, 2,14 с, 2,13 с. Найдите абсолютную случайную погрешность определения периода по этим данным.

28. Опыт падения груза с некоторой высоты повторяли 6 раз. При этом получались следующие величины времени падения груза: 38,0 с, 37,6 с, 37,9 с, 37,4 с, 37,5 с, 37,7 с. Найдите относительную погрешность определения времени падения.

Цена деления – это измеряемая величина, вызывающая отклонение указателя на одно деление. Цена деления определяется как отношение верхнего предела измерения прибора к числу делений шкалы.

Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. В результате проведенных измерений мы получили значений величины:

x1, x2, x3, ... xn. (2)

Этот ряд значений величины x получил название выборки. Имея такую выборку, мы можем дать оценку результата измерений. Величину, которая будет являться такой оценкой, мы обозначим. Но так как это значение оценки результатов измерений не будет представлять собой истинного значения измеряемой величины, необходимо оценить его ошибку. Предположим, что мы сумеем определить оценку ошибки Дx . В таком случае мы можем записать результат измерений в виде

Так как оценочные значения результата измерений и ошибки Дx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом.

Например, измеряя длину некоторого отрезка, окончательный результат мы записали в виде

l = (8.34 ± 0.02) мм, (P = 0.95)

Это означает, что из 100 шансов - 95 за то, что истинное значение длины отрезка заключается в интервале от 8.32 до 8.36 мм.

Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений, его ошибку Дx и надежность P.

Эта задача может быть решена с помощью теории вероятностей и математической статистики.

В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой

где Дx - отклонение от величины истинного значения;

у - истинная среднеквадратичная ошибка;

у 2- дисперсия, величина которой характеризует разброс случайных величин.

Как видно из (4) функция имеет максимальное значение при x = 0 , кроме того, она является четной.

На рис.16 показан график этой функции. Смысл функции (4) заключается в том, что площадь фигуры, заключенной между кривой, осью Дx и двумя ординатами из точек Дx1 и Дx2 (заштрихованная площадь на рис.16) численно равна вероятности, с которой любой отсчет попадет в интервал (Дx1,Дx2) .

Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2)

где - n число измерений.

Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению м измеряемой величины при n > ?.

Средней квадратичной ошибкой отдельного результата измерения называется величина (6)

Она характеризует ошибку каждого отдельного измерения. При n > ? S стремится к постоянному пределу у

С увеличением у увеличивается разброс отсчетов, т.е. становится ниже точность измерений.

Среднеквадратичной ошибкой среднего арифметического называется величина(8)

Это фундаментальный закон возрастания точности при росте числа измерений.

Ошибка характеризует точность, с которой получено среднее значение измеренной величины Результат записывается в виде:

Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 - 50 раз.

В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n > ? переходит в распределение Гаусса, а при малом числе отличается от него.

Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом

Стьюдента t.

Опуская теоретические обоснования его введения, заметим, что

Дx = · t. (10)

где Дx - абсолютная ошибка для данной доверительной вероятности;

среднеквадратичная ошибка среднего арифметического.

Коэффициенты Стьюдента приведены в таблице.

Из сказанного следует:

Величина среднеквадратичной ошибки позволяет вычислить вероятность попадания истинного значения измеряемой величины в любой интервал вблизи среднего арифметического.

При n > ? > 0, т.е. интервал, в котором с заданной вероятностью находится истинное значение м, стремится к нулю с увеличением числа измерений. Казалось бы, увеличивая n, можно получить результат с любой степенью точности. Однако точность существенно увеличивается лишь до тех пор, пока случайная ошибка не станет сравнимой с систематической. Дальнейшее увеличение числа измерений нецелесообразно, т.к. конечная точность результата будет зависеть только от систематической ошибки. Зная величину систематической ошибки, нетрудно задаться допустимой величиной случайной ошибки, взяв ее, например, равной 10% от систематической. Задавая для выбранного таким образом доверительного интервала определенное значение P (например, P = 0.95), нетрудно нейти необходимое число измерений, гарантирующее малое влияние случайной ошибки на точность результата.

Для этого удобнее воспользоваться таблицей коэффициентов Стьюдента, в которой интервалы заданы в долях величины у, являющейся мерой точности данного опыта по отношению к случайным ошибкам.

При обработке результатов прямых измерений предлагается следующий порядок операций:

Результат каждого измерения запишите в таблицу.

Вычислите среднее значение из n измерений

Найдите погрешность отдельного измерения

Вычислите квадраты погрешностей отдельных измерений

(Дx 1)2, (Дx 2)2, ... , (Дx n)2.

Определите среднеквадратичную ошибку среднего арифметического

Задайте значение надежности (обычно берут P = 0.95).

Определите коэффициент Стьюдента t для заданной надежности P и числа произведенных измерений n.

Найдите доверительный интервал (погрешность измерения)

Если величина погрешности результата измерения Дx окажется сравнимой с величиной погрешности прибора д, то в качестве границы доверительного интервала возьмите

Если одна из ошибок меньше другой в три или более раз, то меньшую отбросьте.

Окончательный результат запишите в виде

В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет).

Случай 1. Число измерений меньше пяти.

x , определяемый как среднее арифметическое от результатов всех измерений, т.е.

2) По формуле (12) вычисляются абсолютные погрешности отдельных измерений

3) По формуле (14) определяется средняя абсолютная погрешность

.

4) По формуле (15) вычисляют среднюю относительную погрешность результата измерений

5) Записывают окончательный результат по следующей форме:

Случай 2 . Число измерений свыше пяти.

1) По формуле (6) находится средний результат

2) По формуле (12) определяются абсолютные погрешности отдельных измерений

3) По формуле (7) вычисляется средняя квадратическая погрешность единичного измерения

.

4) Вычисляется среднее квадратическое отклонение для среднего значения измеряемой величины по формуле (9).

5) Записывается окончательный результат по следующей форме

Иногда случайные погрешности измерений могут оказаться меньше той величины, которую в состоянии зарегистрировать измерительный прибор (инструмент). В этом случае при любом числе измерений получается один и тот же результат. В подобных случаях в качестве средней абсолютной погрешности принимают половину цены деления шкалы прибора (инструмента). Эту величину иногда называют предельной или приборной погрешностью и обозначают (для нониусных приборов и секундомера равна точности прибора).

Оценка достоверности результатов измерений

В любом эксперименте число измерений физической величины всегда по тем или иным причинам ограничено. В связи с этим может быть поставлена задача оценить достоверность полученного результата. Иными словами, определить, с какой вероятностью можно утверждать, что допущенная при этом оши­бка не превосходит наперед заданную величину ε. Упомянутую вероятность принято называть доверительной вероятностью. Обозначим её буквой .

Может быть поставлена и обратная задача: определить границы интервала , чтобы с заданной вероятностью можно было утверждать, что истинное значение измерений величины не выйдет за пределы указанного, так называемого доверительного интервала.

Доверительный интервал характеризует точность полученного результата, а доверительная вероятность - его надёжность. Методы решения этих двух групп задач имеются и особенно подробно разработаны для случая, когда погрешности измерений распределены по нормальному закону. Теория ве­роятностей даёт также методы для определения числа опытов (повторных измерений), при которых обеспечивается заданная точность и надёжность ожидаемого результата. В данной работе эти методы не рассматриваются (ограничимся только их упоминанием), так как при выполнении лабораторных работ подобные задачи обычно не ставятся.



Особый интерес, однако, представляет случай оценки достоверности результата измерений физических величин при весьма малом числе повторных измерений. Например, . Это именно тот случай, с которым мы часто встречаемся при выполнении лабораторных работ по физике. При решении указанного рода задач рекомендуется использовать метод, в основе которого лежит распределение (закон) Стьюдента.

Для удобства практического применения рассматриваемого метода имеются таблицы, с помощью которых можно определить доверительный интервал , соответствующий заданной доверительной вероятности или решить обратную задачу.

Ниже приведены те части упомянутых таблиц, которые могут потребоваться при оценке результатов измерений на лабораторных занятиях.

Пусть, например, произведено равноточных (в одинаковых условиях) измерений некоторой физической величины и вычислено её среднее значение . Требуется найти доверительный интервал , соответствующий заданной доверительной вероятности . Задача в общем виде решается так.

По формуле с учётом (7) вычисляют

Затем для заданных значений n и находят по таблице (табл. 2) величину . Искомое значение вычисляется на основе формулы

При решении обратной задачи вначале вычисляют по формуле (16) параметр . Искомое значение доверительной вероятности берётся из таблицы (табл. 3) для заданного числа и вычисленного параметра .

Таблица 2. Значение параметра при заданных числе опытов

и доверительной вероятности

n 0,5 0,6 0,7 0,8 0,9 0,95 0.98 0,99 0.995 0,999
1,000 1,376 1,963 3,08 6,31 12,71 31,8 63,7 127,3 637,2
0,816 1,061 1,336 1,886 2,91 4,30 6,96 9,92 14,1 31,6
0,765 0,978 1,250 1,638 2,35 3,18 4,54 5,84 7,5 12,94
0,741 0,941 1,190 1,533 2,13 2,77 3,75 4,60 5,6 8,61
0,727 0,920 1,156 1,476 2,02 2,57 3,36 4,03 4,77 6,86
0.718 0,906 1,134 1,440 1,943 2,45 3,14 3,71 4,32 5,96
0,711 0,896 1,119 1,415 1,895 2,36 3,00 3,50 4,03 5,40
0,706 0,889 1,108 1,397 1,860 2,31 2,90 3,36 3,83 5,04
0,703 0,883 1,110 1,383 1,833 2,26 2,82 3,25 3,69 4,78

Таблица 3 Значение доверительной вероятности при заданном числе опытов n и параметре ε

n 2,5 3,5
0,705 0,758 0,795 0,823
0,816 0,870 0,905 0,928
0,861 0,912 0,942 0,961
0,884 0,933 0,960 0,975
б 0,898 0,946 0,970 0,983
0,908 0,953 0,976 0,987
0,914 0,959 0,980 0,990
0,919 0.963 0,983 0,992
0,923 0,969 0,985 0,993

Обработка результатов косвенных измерений

Очень редко содержание лабораторной работы или научного эксперимента сводится к получению результата прямого измерения. Большей частью искомая величина является функцией нескольких других величин.

Задача обработки опытов при косвенных измерениях заключается в том, чтобы на основании результатов прямых измерений некоторых величин (аргументов), связанных с искомой величиной определённой функциональной зависимостью, вычислить наиболее вероятное значение искомой величины и оценить погрешность косвенных измерений.

Существует несколько способов обработки косвенных измерений. Рассмотрим следующие два способа.

Пусть по методу косвенных измерений определяется некоторая физическая величина.

Результаты прямых измерений ее аргументов х, у, z приведены в табл. 4.

Таблица 4

Номер опыта x y z
n

Первый способ обработки результатов заключается в следующем. С помощью расчетной (17) формулы вычисляют искомую величину по результатам каждого опыта

(17)

Описанный способ обработки результатов применим, в принципе, во всех без исключения случаях косвенных измерений. Однако наиболее целесообразно применять его тогда, когда число повторных измерений аргументов небольшое, а расчётная формула косвенно измеряемой величины сравнительно проста.

При втором способе обработки результатов опытов вначале вычисляют, используя результаты прямых измерений (табл. 4), средние арифметические значения каждого из аргументов, а также погрешности их измерения. Подставив , , ,... в расчетную формулу (17), определяют наиболее вероятное значе­ние измеряемой величины

(17*)

Физика - наука экспериментальная, это означает, что физические законы устанавливаются и проверяются путем накопления и сопоставления экспериментальных данных. Цель физического практикума заключается в том, чтобы студенты изучили на опыте основные физические явления, научились правильно измерять числовые значения физических величин и сопоставлять их с теоретическими формулами.

Все измерения можно разделить на два вида – прямые и косвенные .

При прямых измерениях значение искомой величины непосредственно получается по показаниям измерительного прибора. Так, например, длина измеряется линейкой, время по часам и т. д.

Если искомая физическая величина не может быть измерена непосредственно прибором, а посредством формулы выражается через измеряемые величины, то такие измерения называются косвенными .

Измерение любой величины не дает абсолютно точного значения этой величины. Каждое измерение всегда содержит некоторую погрешность (ошибку). Ошибкой называют разность между измеренным и истинным значением.

Ошибки принято делить на систематические и случайные .

Систематической называют ошибку, которая остается постоянной на протяжении всей серии измерений. Такие погрешности обусловлены несовершенством измерительного инструмента (например, смещением нуля прибора) или методом измерений и могут быть, в принципе, исключены из конечного результата введением соответствующей поправки.

К систематическим ошибкам относятся также погрешность измерительных приборов. Точность любого прибора ограничена и характеризуется его классом точности, который, как правило, обозначен на измерительной шкале.

Случайной называется ошибка, которая изменяется в разных опытах и может быть и положительной и отрицательной. Случайные ошибки обусловлены причинами, зависящими как от измерительного устройства, (трение, зазоры, и т. п..), так и от внешних условий (вибрации, колебания напряжения в сети и т.п.).

Случайные ошибки нельзя исключить опытным путем, но их влияние на результат можно уменьшить многократными измерениями.

Вычисление погрешности при прямых измерениях среднее значение и средняя абсолютная ошибка.

Предположим, что мы проводим серию измерений величины Х. Из-за наличия случайных ошибок, получаем n различных значений:

Х 1 , Х 2 , Х 3 … Х n

В качестве результата измерений обычно принимают среднее значение

Разность между средним значением и результатом i – го измерения назовем абсолютной ошибкой этого измерения

В качестве меры ошибки среднего значения можно принять среднее значение абсолютной ошибки отдельного измерения

(2)

Величина
называется средней арифметической (или средней абсолютной) ошибкой.

Тогда результат измерений следует записать в виде

(3)

Для характеристики точности измерений служит относительная ошибка, которую принято выражать в процентах

(4)